Narrow your search
Listing 1 - 10 of 13 << page
of 2
>>
Sort by

Dissertation
Contribution à l'étude protéomique de l'interaction plante / puceron et recherche de mécanismes de défense végétale dans la salive de Myzus persicae
Authors: ---
Year: 2010 Publisher: [S.l : chez l'auteur],

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Emerging and Disruptive Next-Generation Technologies for POC: Sensors, Chemistry and Microfluidics for Diagnostics
Authors: --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Recently, the attention paid to self-care tests and the easy and large screening of a high number of people has dramatically increased. Indeed, easy and affordable tools for the safe management of biological fluids together with self-diagnosis have emerged as compulsory requirements in this time of the COVID-19 pandemic, to lighten the pressure on public healthcare institutions and thus limiting the diffusion of infections. Obviously, other kinds of pathologies (cancer or other degenerative diseases) also continue to require attention, with progressively earlier and more widespread diagnoses. The contribution to the development of this research field comes from the areas of innovative plastic and 3D microfluidics, smart chemistry and the integration of miniaturized sensors, going in the direction of improving the performances of in vitro diagnostic (IVD) devices. In our Special Issue, we include papers describing easy strategies to identify diseases at the point-of-care and near-the-bed levels, but also dealing with innovative biomarkers, sample treatments, and chemistry processes which, in perspective, represent promising tools to be applied in the field.


Book
Emerging and Disruptive Next-Generation Technologies for POC: Sensors, Chemistry and Microfluidics for Diagnostics
Authors: --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Recently, the attention paid to self-care tests and the easy and large screening of a high number of people has dramatically increased. Indeed, easy and affordable tools for the safe management of biological fluids together with self-diagnosis have emerged as compulsory requirements in this time of the COVID-19 pandemic, to lighten the pressure on public healthcare institutions and thus limiting the diffusion of infections. Obviously, other kinds of pathologies (cancer or other degenerative diseases) also continue to require attention, with progressively earlier and more widespread diagnoses. The contribution to the development of this research field comes from the areas of innovative plastic and 3D microfluidics, smart chemistry and the integration of miniaturized sensors, going in the direction of improving the performances of in vitro diagnostic (IVD) devices. In our Special Issue, we include papers describing easy strategies to identify diseases at the point-of-care and near-the-bed levels, but also dealing with innovative biomarkers, sample treatments, and chemistry processes which, in perspective, represent promising tools to be applied in the field.


Book
Emerging and Disruptive Next-Generation Technologies for POC: Sensors, Chemistry and Microfluidics for Diagnostics
Authors: --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Recently, the attention paid to self-care tests and the easy and large screening of a high number of people has dramatically increased. Indeed, easy and affordable tools for the safe management of biological fluids together with self-diagnosis have emerged as compulsory requirements in this time of the COVID-19 pandemic, to lighten the pressure on public healthcare institutions and thus limiting the diffusion of infections. Obviously, other kinds of pathologies (cancer or other degenerative diseases) also continue to require attention, with progressively earlier and more widespread diagnoses. The contribution to the development of this research field comes from the areas of innovative plastic and 3D microfluidics, smart chemistry and the integration of miniaturized sensors, going in the direction of improving the performances of in vitro diagnostic (IVD) devices. In our Special Issue, we include papers describing easy strategies to identify diseases at the point-of-care and near-the-bed levels, but also dealing with innovative biomarkers, sample treatments, and chemistry processes which, in perspective, represent promising tools to be applied in the field.


Book
Molecular Biocatalysis 2.0
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Biotransformation has accompanied mankind since the Neolithic community, when people settled down and began to engage in agriculture. Modern biocatalysis started in the mid-1850s with the pioneer works of Pasteur. Today, biotransformations have become an indispensable part of our lives, similar to other hi-tech products. Now, in 2019, biocatalysis “received” the Nobel Prize in Chemistry due to prof. Frances H. Arnold’s achievements in the area of the directed evolution of enzymes. This book deals with some major topics of biotransformation, such as the application of enzymatic methods in glycobiology, including the synthesis of hyaluronan, complex glycoconjugates of N-acetylmuramic acid, and the enzymatic deglycosylation of rutin. Enzymatic redox reactions were exemplified by the enzymatic synthesis of indigo from indole, oxidations of β-ketoesters and the engineering of a horse radish peroxidase. The enzymatic reactions were elegantly employed in biosensors, such as glucose oxidase, in the case of electrochemical glucose sensors. Nitrilases are important enzymes for nitrile metabolism in plants and microorganisms have already found broad application in industry—here, these enzymes were for the first time described in Basidiomyceta. This book nicely describes molecular biocatalysis as a pluripotent methodology—“A jack of all trades...”—which strongly contributes to the high quality and sustainability of our daily lives.


Book
Molecular Biocatalysis 2.0
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Biotransformation has accompanied mankind since the Neolithic community, when people settled down and began to engage in agriculture. Modern biocatalysis started in the mid-1850s with the pioneer works of Pasteur. Today, biotransformations have become an indispensable part of our lives, similar to other hi-tech products. Now, in 2019, biocatalysis “received” the Nobel Prize in Chemistry due to prof. Frances H. Arnold’s achievements in the area of the directed evolution of enzymes. This book deals with some major topics of biotransformation, such as the application of enzymatic methods in glycobiology, including the synthesis of hyaluronan, complex glycoconjugates of N-acetylmuramic acid, and the enzymatic deglycosylation of rutin. Enzymatic redox reactions were exemplified by the enzymatic synthesis of indigo from indole, oxidations of β-ketoesters and the engineering of a horse radish peroxidase. The enzymatic reactions were elegantly employed in biosensors, such as glucose oxidase, in the case of electrochemical glucose sensors. Nitrilases are important enzymes for nitrile metabolism in plants and microorganisms have already found broad application in industry—here, these enzymes were for the first time described in Basidiomyceta. This book nicely describes molecular biocatalysis as a pluripotent methodology—“A jack of all trades...”—which strongly contributes to the high quality and sustainability of our daily lives.


Book
Molecular Biocatalysis 2.0
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Biotransformation has accompanied mankind since the Neolithic community, when people settled down and began to engage in agriculture. Modern biocatalysis started in the mid-1850s with the pioneer works of Pasteur. Today, biotransformations have become an indispensable part of our lives, similar to other hi-tech products. Now, in 2019, biocatalysis “received” the Nobel Prize in Chemistry due to prof. Frances H. Arnold’s achievements in the area of the directed evolution of enzymes. This book deals with some major topics of biotransformation, such as the application of enzymatic methods in glycobiology, including the synthesis of hyaluronan, complex glycoconjugates of N-acetylmuramic acid, and the enzymatic deglycosylation of rutin. Enzymatic redox reactions were exemplified by the enzymatic synthesis of indigo from indole, oxidations of β-ketoesters and the engineering of a horse radish peroxidase. The enzymatic reactions were elegantly employed in biosensors, such as glucose oxidase, in the case of electrochemical glucose sensors. Nitrilases are important enzymes for nitrile metabolism in plants and microorganisms have already found broad application in industry—here, these enzymes were for the first time described in Basidiomyceta. This book nicely describes molecular biocatalysis as a pluripotent methodology—“A jack of all trades...”—which strongly contributes to the high quality and sustainability of our daily lives.


Book
The Origin and Early Evolution of Life : Prebiotic Systems Chemistry Perspective
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

What is life? How, where, and when did life arise? These questions have remained most fascinating over the last hundred years. Systems chemistry is the way to go to better understand this problem and to try and answer the unsolved question regarding the origin of Life. Self-organization, thanks to the role of lipid boundaries, made possible the rise of protocells. The role of these boundaries is to separate and co-locate micro-environments, and make them spatially distinct; to protect and keep them at defined concentrations; and to enable a multitude of often competing and interfering biochemical reactions to occur simultaneously. The aim of this Special Issue is to summarize the latest discoveries in the field of the prebiotic chemistry of biomolecules, self-organization, protocells and the origin of life. In recent years, thousands of excellent reviews and articles have appeared in the literature and some breakthroughs have already been achieved. However, a great deal of work remains to be carried out. Beyond the borders of the traditional domains of scientific activity, the multidisciplinary character of the present Special Issue leaves space for anyone to creatively contribute to any aspect of these and related relevant topics. We hope that the presented works will be stimulating for a new generation of scientists that are taking their first steps in this fascinating field.

Keywords

Research & information: general --- Biology, life sciences --- origin of life --- peptidyl-transferase center --- pseudo-symmetry --- proto-ribosome --- SymR --- emergence of biological systems --- RNA ligation --- dimerization --- standard genetic codes --- codon assignment --- tRNA --- aminoacyl-tRNA synthetase classes --- thiophene --- acetylene --- transition metal sulfides --- hydrothermal conditions --- early metabolism --- origin-of-life --- prebiotic chemistry --- protein–monosaccharide recognition --- protein–monosaccharide interactions --- FRET analysis --- glycocodon theory --- glucose oxidase --- Mars --- prebiotic chemical evolution --- early Earth --- astrobiology --- CHNOPS --- transition elements --- sample return --- exoplanets --- complex organic molecules --- astrochemistry --- interstellar medium --- molecular ices --- solid state --- protoplanetary disks --- star forming regions --- comets --- vesicles --- division --- urea–urease enzymatic reaction --- bending modulus --- budding --- ADE theory --- dynamic kinetic stability --- cognition --- chemical evolution --- systems chemistry --- metabolism --- network expansion simulation --- temperature --- thermodynamics --- protocell --- compartment --- solid interface --- lipid --- polymerization --- cyclic nucleotides --- autocatalytic set --- osmotic pressure --- cell division --- lipid membrane --- bistable reaction system --- template-directed RNA synthesis --- origin of genetic code --- time order of canonical amino acids --- proto-metabolism --- chirogenesis --- quartz --- amino acids --- radiation damage --- GC×GC-TOFMS --- origins of life --- prebiotic membranes --- protoamphiphiles --- metal ions --- hot springs --- N-acyl amino acid --- analogue conditions --- viroids --- ribozyviruses --- primordial replicators --- ribozymes --- bilayer structure --- molecular dynamics --- aggregation process --- selection --- evolution --- Fenton chemistry --- reduced phosphorus --- pyrophosphate --- chemical complexity --- minerals --- schreibersite --- olivine --- serpentinite --- ulexite --- n/a --- protein-monosaccharide recognition --- protein-monosaccharide interactions --- urea-urease enzymatic reaction


Book
The Origin and Early Evolution of Life : Prebiotic Systems Chemistry Perspective
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

What is life? How, where, and when did life arise? These questions have remained most fascinating over the last hundred years. Systems chemistry is the way to go to better understand this problem and to try and answer the unsolved question regarding the origin of Life. Self-organization, thanks to the role of lipid boundaries, made possible the rise of protocells. The role of these boundaries is to separate and co-locate micro-environments, and make them spatially distinct; to protect and keep them at defined concentrations; and to enable a multitude of often competing and interfering biochemical reactions to occur simultaneously. The aim of this Special Issue is to summarize the latest discoveries in the field of the prebiotic chemistry of biomolecules, self-organization, protocells and the origin of life. In recent years, thousands of excellent reviews and articles have appeared in the literature and some breakthroughs have already been achieved. However, a great deal of work remains to be carried out. Beyond the borders of the traditional domains of scientific activity, the multidisciplinary character of the present Special Issue leaves space for anyone to creatively contribute to any aspect of these and related relevant topics. We hope that the presented works will be stimulating for a new generation of scientists that are taking their first steps in this fascinating field.

Keywords

Research & information: general --- Biology, life sciences --- origin of life --- peptidyl-transferase center --- pseudo-symmetry --- proto-ribosome --- SymR --- emergence of biological systems --- RNA ligation --- dimerization --- standard genetic codes --- codon assignment --- tRNA --- aminoacyl-tRNA synthetase classes --- thiophene --- acetylene --- transition metal sulfides --- hydrothermal conditions --- early metabolism --- origin-of-life --- prebiotic chemistry --- protein–monosaccharide recognition --- protein–monosaccharide interactions --- FRET analysis --- glycocodon theory --- glucose oxidase --- Mars --- prebiotic chemical evolution --- early Earth --- astrobiology --- CHNOPS --- transition elements --- sample return --- exoplanets --- complex organic molecules --- astrochemistry --- interstellar medium --- molecular ices --- solid state --- protoplanetary disks --- star forming regions --- comets --- vesicles --- division --- urea–urease enzymatic reaction --- bending modulus --- budding --- ADE theory --- dynamic kinetic stability --- cognition --- chemical evolution --- systems chemistry --- metabolism --- network expansion simulation --- temperature --- thermodynamics --- protocell --- compartment --- solid interface --- lipid --- polymerization --- cyclic nucleotides --- autocatalytic set --- osmotic pressure --- cell division --- lipid membrane --- bistable reaction system --- template-directed RNA synthesis --- origin of genetic code --- time order of canonical amino acids --- proto-metabolism --- chirogenesis --- quartz --- amino acids --- radiation damage --- GC×GC-TOFMS --- origins of life --- prebiotic membranes --- protoamphiphiles --- metal ions --- hot springs --- N-acyl amino acid --- analogue conditions --- viroids --- ribozyviruses --- primordial replicators --- ribozymes --- bilayer structure --- molecular dynamics --- aggregation process --- selection --- evolution --- Fenton chemistry --- reduced phosphorus --- pyrophosphate --- chemical complexity --- minerals --- schreibersite --- olivine --- serpentinite --- ulexite --- n/a --- protein-monosaccharide recognition --- protein-monosaccharide interactions --- urea-urease enzymatic reaction


Book
The Origin and Early Evolution of Life : Prebiotic Systems Chemistry Perspective
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

What is life? How, where, and when did life arise? These questions have remained most fascinating over the last hundred years. Systems chemistry is the way to go to better understand this problem and to try and answer the unsolved question regarding the origin of Life. Self-organization, thanks to the role of lipid boundaries, made possible the rise of protocells. The role of these boundaries is to separate and co-locate micro-environments, and make them spatially distinct; to protect and keep them at defined concentrations; and to enable a multitude of often competing and interfering biochemical reactions to occur simultaneously. The aim of this Special Issue is to summarize the latest discoveries in the field of the prebiotic chemistry of biomolecules, self-organization, protocells and the origin of life. In recent years, thousands of excellent reviews and articles have appeared in the literature and some breakthroughs have already been achieved. However, a great deal of work remains to be carried out. Beyond the borders of the traditional domains of scientific activity, the multidisciplinary character of the present Special Issue leaves space for anyone to creatively contribute to any aspect of these and related relevant topics. We hope that the presented works will be stimulating for a new generation of scientists that are taking their first steps in this fascinating field.

Keywords

origin of life --- peptidyl-transferase center --- pseudo-symmetry --- proto-ribosome --- SymR --- emergence of biological systems --- RNA ligation --- dimerization --- standard genetic codes --- codon assignment --- tRNA --- aminoacyl-tRNA synthetase classes --- thiophene --- acetylene --- transition metal sulfides --- hydrothermal conditions --- early metabolism --- origin-of-life --- prebiotic chemistry --- protein–monosaccharide recognition --- protein–monosaccharide interactions --- FRET analysis --- glycocodon theory --- glucose oxidase --- Mars --- prebiotic chemical evolution --- early Earth --- astrobiology --- CHNOPS --- transition elements --- sample return --- exoplanets --- complex organic molecules --- astrochemistry --- interstellar medium --- molecular ices --- solid state --- protoplanetary disks --- star forming regions --- comets --- vesicles --- division --- urea–urease enzymatic reaction --- bending modulus --- budding --- ADE theory --- dynamic kinetic stability --- cognition --- chemical evolution --- systems chemistry --- metabolism --- network expansion simulation --- temperature --- thermodynamics --- protocell --- compartment --- solid interface --- lipid --- polymerization --- cyclic nucleotides --- autocatalytic set --- osmotic pressure --- cell division --- lipid membrane --- bistable reaction system --- template-directed RNA synthesis --- origin of genetic code --- time order of canonical amino acids --- proto-metabolism --- chirogenesis --- quartz --- amino acids --- radiation damage --- GC×GC-TOFMS --- origins of life --- prebiotic membranes --- protoamphiphiles --- metal ions --- hot springs --- N-acyl amino acid --- analogue conditions --- viroids --- ribozyviruses --- primordial replicators --- ribozymes --- bilayer structure --- molecular dynamics --- aggregation process --- selection --- evolution --- Fenton chemistry --- reduced phosphorus --- pyrophosphate --- chemical complexity --- minerals --- schreibersite --- olivine --- serpentinite --- ulexite --- n/a --- protein-monosaccharide recognition --- protein-monosaccharide interactions --- urea-urease enzymatic reaction

Listing 1 - 10 of 13 << page
of 2
>>
Sort by