Narrow your search
Listing 1 - 10 of 16 << page
of 2
>>
Sort by

Book
Integrated RF/optical interplanetary networking preliminary explorations and empirical results
Authors: --- ---
Year: 2012 Publisher: Cleveland, Ohio : National Aeronautics and Space Administration, Glenn Research Center,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Processing issues for preliminary melts of the intermetallic compound 60-NITINOL
Authors: --- --- ---
Year: 2012 Publisher: Cleveland, Ohio : National Aeronautics and Space Administration, Glenn Research Center,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Charpy impact energy and microindentation hardness of 60-NITINOL
Authors: ---
Year: 2012 Publisher: Cleveland, Ohio : National Aeronautics and Space Administration, Glenn Research Center,

Loading...
Export citation

Choose an application

Bookmark

Abstract

From Charpy to present impact testing
Authors: --- ---
ISBN: 1281046078 9786611046071 008052897X 0080439705 9780080439709 9780080528977 Year: 2002 Volume: 30 Publisher: London : Elsevier,

Loading...
Export citation

Choose an application

Bookmark

Abstract

From Charpy to Present Impact Testing contains 52 peer-reviewed papers selected from those presented at the Charpy Centenary Conference held in Poitiers, France, 2-5 October 2001. The name of Charpy remains associated with impact testing on notched specimens. At a time when many steam engines exploded, engineers were preoccupied with studying the resistance of steels to impact loading. The Charpy test has provided invaluable indications on the impact properties of materials. It revealed the brittle ductile transition of ferritic steels. The Charpy test is a


Book
Advances in Thermal Spray Technology
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Thermal spray technology has been widely adopted industrially to combat diverse forms of surface degradation caused by wear, corrosion, oxidation, high thermal load, etc. Nonetheless, improvements in coating quality are incessantly sought to further enhance durability and/or performance of components operating in increasingly aggressive environments. This has led to technology advancements on various fronts, spanning feedstock materials, process variants, torch designs, coating architectures, etc. These have also been complemented by developments in closely allied areas to accommodate novel substrate materials, explore post-treatments, investigate coating behaviour under varied harsh conditions and harness benefits of artificial intelligence/neural networking. All of the above, along with efforts to improve diagnostic tools and create reliable control systems, have been driven by the desire to achieve robust shop-floor thermal spray capabilities to consolidate existing applications and spur new ones. This book is a compilation of twelve exciting contributions made for the Special Issue on “Advances in Thermal Spray Technology”, and showcases some of the above developments that are currently attracting interest in the field.


Book
Dislocation Mechanics of Metal Plasticity and Fracturing
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The modern understanding of metal plasticity and fracturing began about 100 years ago, with pioneering work; first, on crack-induced fracturing by Griffith and, second, with the invention of dislocation-enhanced crystal plasticity by Taylor, Orowan and Polanyi. The modern counterparts are fracture mechanics, as invented by Irwin, and dislocation mechanics, as initiated in pioneering work by Cottrell. No less important was the breakthrough development of optical characterization of sectioned polycrystalline metal microstructures started by Sorby in the late 19th century and leading eventually to modern optical, x-ray and electron microscopy methods for assessments of crystal fracture surfaces, via fractography, and particularly of x-ray and electron microscopy techniques applied to quantitative characterizations of internal dislocation behaviors. A major current effort is to match computational simulations of metal deformation/fracturing behaviors with experimental measurements made over extended ranges of microstructures and over varying external conditions of stress-state, temperature and loading rate. The relation of such simulations to the development of constitutive equations for a hoped-for predictive description of material deformation/fracturing behaviors is an active topic of research. The present collection of articles provides a broad sampling of research accomplishments on the two subjects.


Book
Dislocation Mechanics of Metal Plasticity and Fracturing
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The modern understanding of metal plasticity and fracturing began about 100 years ago, with pioneering work; first, on crack-induced fracturing by Griffith and, second, with the invention of dislocation-enhanced crystal plasticity by Taylor, Orowan and Polanyi. The modern counterparts are fracture mechanics, as invented by Irwin, and dislocation mechanics, as initiated in pioneering work by Cottrell. No less important was the breakthrough development of optical characterization of sectioned polycrystalline metal microstructures started by Sorby in the late 19th century and leading eventually to modern optical, x-ray and electron microscopy methods for assessments of crystal fracture surfaces, via fractography, and particularly of x-ray and electron microscopy techniques applied to quantitative characterizations of internal dislocation behaviors. A major current effort is to match computational simulations of metal deformation/fracturing behaviors with experimental measurements made over extended ranges of microstructures and over varying external conditions of stress-state, temperature and loading rate. The relation of such simulations to the development of constitutive equations for a hoped-for predictive description of material deformation/fracturing behaviors is an active topic of research. The present collection of articles provides a broad sampling of research accomplishments on the two subjects.


Book
Advances in Thermal Spray Technology
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Thermal spray technology has been widely adopted industrially to combat diverse forms of surface degradation caused by wear, corrosion, oxidation, high thermal load, etc. Nonetheless, improvements in coating quality are incessantly sought to further enhance durability and/or performance of components operating in increasingly aggressive environments. This has led to technology advancements on various fronts, spanning feedstock materials, process variants, torch designs, coating architectures, etc. These have also been complemented by developments in closely allied areas to accommodate novel substrate materials, explore post-treatments, investigate coating behaviour under varied harsh conditions and harness benefits of artificial intelligence/neural networking. All of the above, along with efforts to improve diagnostic tools and create reliable control systems, have been driven by the desire to achieve robust shop-floor thermal spray capabilities to consolidate existing applications and spur new ones. This book is a compilation of twelve exciting contributions made for the Special Issue on “Advances in Thermal Spray Technology”, and showcases some of the above developments that are currently attracting interest in the field.


Book
Advances in Thermal Spray Technology
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Thermal spray technology has been widely adopted industrially to combat diverse forms of surface degradation caused by wear, corrosion, oxidation, high thermal load, etc. Nonetheless, improvements in coating quality are incessantly sought to further enhance durability and/or performance of components operating in increasingly aggressive environments. This has led to technology advancements on various fronts, spanning feedstock materials, process variants, torch designs, coating architectures, etc. These have also been complemented by developments in closely allied areas to accommodate novel substrate materials, explore post-treatments, investigate coating behaviour under varied harsh conditions and harness benefits of artificial intelligence/neural networking. All of the above, along with efforts to improve diagnostic tools and create reliable control systems, have been driven by the desire to achieve robust shop-floor thermal spray capabilities to consolidate existing applications and spur new ones. This book is a compilation of twelve exciting contributions made for the Special Issue on “Advances in Thermal Spray Technology”, and showcases some of the above developments that are currently attracting interest in the field.


Book
Dislocation Mechanics of Metal Plasticity and Fracturing
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The modern understanding of metal plasticity and fracturing began about 100 years ago, with pioneering work; first, on crack-induced fracturing by Griffith and, second, with the invention of dislocation-enhanced crystal plasticity by Taylor, Orowan and Polanyi. The modern counterparts are fracture mechanics, as invented by Irwin, and dislocation mechanics, as initiated in pioneering work by Cottrell. No less important was the breakthrough development of optical characterization of sectioned polycrystalline metal microstructures started by Sorby in the late 19th century and leading eventually to modern optical, x-ray and electron microscopy methods for assessments of crystal fracture surfaces, via fractography, and particularly of x-ray and electron microscopy techniques applied to quantitative characterizations of internal dislocation behaviors. A major current effort is to match computational simulations of metal deformation/fracturing behaviors with experimental measurements made over extended ranges of microstructures and over varying external conditions of stress-state, temperature and loading rate. The relation of such simulations to the development of constitutive equations for a hoped-for predictive description of material deformation/fracturing behaviors is an active topic of research. The present collection of articles provides a broad sampling of research accomplishments on the two subjects.

Listing 1 - 10 of 16 << page
of 2
>>
Sort by