Narrow your search

Library

ULiège (6)

KU Leuven (5)

FARO (4)

LUCA School of Arts (4)

Odisee (4)

Thomas More Kempen (4)

Thomas More Mechelen (4)

UCLL (4)

ULB (4)

VIVES (4)

More...

Resource type

book (11)


Language

English (10)

French (1)


Year
From To Submit

2021 (6)

2020 (1)

2016 (1)

1998 (1)

1996 (1)

More...
Listing 1 - 10 of 11 << page
of 2
>>
Sort by

Book
Improved composite material and method for production of improved composite material
Authors: ---
Year: 1994 Publisher: [Washington, DC] : [National Aeronautics and Space Administration],

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Forces interfaciales en milieux aqueux
Authors: --- ---
ISBN: 2225851913 Year: 1996 Publisher: Paris : Masson,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Phase-field modeling of microstructural pattern formation in alloys and geological veins
Author:
ISBN: 1000052440 373150491X Year: 2016 Publisher: KIT Scientific Publishing

Loading...
Export citation

Choose an application

Bookmark

Abstract

With the advent of high performance computing, the application areas of the phase-field method, traditionally used to numerically model the phase transformation in metals and alloys, have now spanned into geoscience. A systematic investigation of the two distinct scientific problems in consideration suggest a strong influence of interfacial energy on the natural and induced pattern formation in diffusion-controlled regime.


Book
Study of an alternative phase field model for low interfacial energy in elastic solids
Author:
Year: 2021 Publisher: Berlin Logos Verlag Berlin

Loading...
Export citation

Choose an application

Bookmark

Abstract

In 2005, the hybrid model was published by Prof. H.-D. Alber and Prof. P. Zhu as an alternative to the Allen-Cahn model for the description of phase field transformations. With low interfacial energy, it is more efficient, since the resolution of the diffuse interface is numerically broader for the same solution accuracy and allows coarser meshing. The solutions of both models are associated with energy minimisation and in this work the error terms introduced in the earlier publications are discussed and documented using one and two dimensional numerical simulations. In the last part of this book, phase field problems, initially not coupled with material equations, are combined with linear elasticity and, after simple introductory examples, a growing martensitic inclusion is simulated and compared with literature data. In addition to the confirmed numerical advantage, another phenomenon not previously described in the literature is found: with the hybrid model, in contrast to the examples calculated with the Allen-Cahn model, an inclusion driven mainly by curvature energy does not disappear completely. The opposite problem prevents inclusions from growing from very small initial configurations, but this fact can be remedied by a very finely chosen diffuse interface width and by analysing and adjusting the terms that generate the modelling errors. The last example shows that the hybrid model can be used with numerical advantages despite the above mentioned peculiarities.


Book
Study of an alternative phase field model for low interfacial energy in elastic solids
Author:
Year: 2021 Publisher: Berlin Logos Verlag Berlin

Loading...
Export citation

Choose an application

Bookmark

Abstract

In 2005, the hybrid model was published by Prof. H.-D. Alber and Prof. P. Zhu as an alternative to the Allen-Cahn model for the description of phase field transformations. With low interfacial energy, it is more efficient, since the resolution of the diffuse interface is numerically broader for the same solution accuracy and allows coarser meshing. The solutions of both models are associated with energy minimisation and in this work the error terms introduced in the earlier publications are discussed and documented using one and two dimensional numerical simulations. In the last part of this book, phase field problems, initially not coupled with material equations, are combined with linear elasticity and, after simple introductory examples, a growing martensitic inclusion is simulated and compared with literature data. In addition to the confirmed numerical advantage, another phenomenon not previously described in the literature is found: with the hybrid model, in contrast to the examples calculated with the Allen-Cahn model, an inclusion driven mainly by curvature energy does not disappear completely. The opposite problem prevents inclusions from growing from very small initial configurations, but this fact can be remedied by a very finely chosen diffuse interface width and by analysing and adjusting the terms that generate the modelling errors. The last example shows that the hybrid model can be used with numerical advantages despite the above mentioned peculiarities.


Book
Study of an alternative phase field model for low interfacial energy in elastic solids
Author:
Year: 2021 Publisher: Berlin Logos Verlag Berlin

Loading...
Export citation

Choose an application

Bookmark

Abstract

In 2005, the hybrid model was published by Prof. H.-D. Alber and Prof. P. Zhu as an alternative to the Allen-Cahn model for the description of phase field transformations. With low interfacial energy, it is more efficient, since the resolution of the diffuse interface is numerically broader for the same solution accuracy and allows coarser meshing. The solutions of both models are associated with energy minimisation and in this work the error terms introduced in the earlier publications are discussed and documented using one and two dimensional numerical simulations. In the last part of this book, phase field problems, initially not coupled with material equations, are combined with linear elasticity and, after simple introductory examples, a growing martensitic inclusion is simulated and compared with literature data. In addition to the confirmed numerical advantage, another phenomenon not previously described in the literature is found: with the hybrid model, in contrast to the examples calculated with the Allen-Cahn model, an inclusion driven mainly by curvature energy does not disappear completely. The opposite problem prevents inclusions from growing from very small initial configurations, but this fact can be remedied by a very finely chosen diffuse interface width and by analysing and adjusting the terms that generate the modelling errors. The last example shows that the hybrid model can be used with numerical advantages despite the above mentioned peculiarities.


Book
COST Action 710 : harmonisation of the pre-processing of meteorological data for atmospheric dispersion models
Authors: ---
ISSN: 10185593 ISBN: 928283302X Year: 1998 Publisher: Luxembourg Office for official publications of the European communities


Book
Computational Quantum Physics and Chemistry of Nanomaterials
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue of Nanomaterials collects a series of original research articles providing new insight into the application of computational quantum physics and chemistry in research on nanomaterials. It illustrates the extension and diversity of the field and indicates some future directions. It provides the reader with an overall view of the latest prospects in this fast evolving and cross-disciplinary field


Book
Computational Quantum Physics and Chemistry of Nanomaterials
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue of Nanomaterials collects a series of original research articles providing new insight into the application of computational quantum physics and chemistry in research on nanomaterials. It illustrates the extension and diversity of the field and indicates some future directions. It provides the reader with an overall view of the latest prospects in this fast evolving and cross-disciplinary field


Book
Computational Quantum Physics and Chemistry of Nanomaterials
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue of Nanomaterials collects a series of original research articles providing new insight into the application of computational quantum physics and chemistry in research on nanomaterials. It illustrates the extension and diversity of the field and indicates some future directions. It provides the reader with an overall view of the latest prospects in this fast evolving and cross-disciplinary field

Listing 1 - 10 of 11 << page
of 2
>>
Sort by