Narrow your search

Library

FARO (4)

KU Leuven (4)

LUCA School of Arts (4)

Odisee (4)

Thomas More Kempen (4)

Thomas More Mechelen (4)

UCLL (4)

ULB (4)

ULiège (4)

VIVES (4)

More...

Resource type

book (12)


Language

English (12)


Year
From To Submit

2021 (6)

2020 (3)

2019 (3)

Listing 1 - 10 of 12 << page
of 2
>>
Sort by

Book
Advances in Water Distribution Networks
Authors: ---
Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The Special Issue on Advances in Water Distribution Networks (WDNs) explores four important topics of research in the framework of WDNs, namely simulation and optimization modelling, topology and partitioning, water quality, and service effectiveness. With regard to the first topic, the following aspects are addressed: pressure-driven formulations, algorithms for the optimal location of control valves to minimize leakage, the benefits of water discharge prediction for the remote real time control of valves, and transients generated by pumps operating as turbines. In the context of the second topic, a topological taxonomy of WDNs is presented, and partitioning methods for the creation of district metered areas are compared. In relation to the third topic, the vulnerability to trihalomethane is assessed, and a statistical optimization model to minimize heavy metal releases is presented. Finally, the fourth topic focusses on the estimation of non-revenue water, including leakage and unauthorized consumption, and on the assessment of service under intermittent supply conditions.


Book
Advances in Water Distribution Networks
Authors: ---
Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The Special Issue on Advances in Water Distribution Networks (WDNs) explores four important topics of research in the framework of WDNs, namely simulation and optimization modelling, topology and partitioning, water quality, and service effectiveness. With regard to the first topic, the following aspects are addressed: pressure-driven formulations, algorithms for the optimal location of control valves to minimize leakage, the benefits of water discharge prediction for the remote real time control of valves, and transients generated by pumps operating as turbines. In the context of the second topic, a topological taxonomy of WDNs is presented, and partitioning methods for the creation of district metered areas are compared. In relation to the third topic, the vulnerability to trihalomethane is assessed, and a statistical optimization model to minimize heavy metal releases is presented. Finally, the fourth topic focusses on the estimation of non-revenue water, including leakage and unauthorized consumption, and on the assessment of service under intermittent supply conditions.


Book
Advances in Water Distribution Networks
Authors: ---
Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The Special Issue on Advances in Water Distribution Networks (WDNs) explores four important topics of research in the framework of WDNs, namely simulation and optimization modelling, topology and partitioning, water quality, and service effectiveness. With regard to the first topic, the following aspects are addressed: pressure-driven formulations, algorithms for the optimal location of control valves to minimize leakage, the benefits of water discharge prediction for the remote real time control of valves, and transients generated by pumps operating as turbines. In the context of the second topic, a topological taxonomy of WDNs is presented, and partitioning methods for the creation of district metered areas are compared. In relation to the third topic, the vulnerability to trihalomethane is assessed, and a statistical optimization model to minimize heavy metal releases is presented. Finally, the fourth topic focusses on the estimation of non-revenue water, including leakage and unauthorized consumption, and on the assessment of service under intermittent supply conditions.


Book
Water Systems towards New Future Challenges
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book comprises components associated with smart water which aims at the exploitation and building of more sustainable and technological water networks towards the water–energy nexus and system efficiency. The implementation of modeling frameworks for measuring the performance based on a set of relevant indicators and data applications and model interfaces provides better support for decisions towards greater sustainability and more flexible and safer solutions. The hydraulic, management, and structural models represent the most effective and viable way to predict the behavior of the water networks under a wide range of conditions of demand and system failures. The knowledge of reliable parameters is crucial to develop approach models and, therefore, positive decisions in real time to be implemented in smart water systems. On the other hand, the models of operation in real-time optimization allow us to extend decisions to smart water systems in order to improve the efficiency of the water network and ensure more reliable and flexible operations, maximizing cost, environmental, and social savings associated with losses or failures. The data obtained in real time instantly update the network model towards digital water models, showing the characteristic parameters of pumps, valves, pressures, and flows, as well as hours of operation towards the lowest operating costs, in order to meet the requirement objectives for an efficient system.


Book
Water Systems towards New Future Challenges
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book comprises components associated with smart water which aims at the exploitation and building of more sustainable and technological water networks towards the water–energy nexus and system efficiency. The implementation of modeling frameworks for measuring the performance based on a set of relevant indicators and data applications and model interfaces provides better support for decisions towards greater sustainability and more flexible and safer solutions. The hydraulic, management, and structural models represent the most effective and viable way to predict the behavior of the water networks under a wide range of conditions of demand and system failures. The knowledge of reliable parameters is crucial to develop approach models and, therefore, positive decisions in real time to be implemented in smart water systems. On the other hand, the models of operation in real-time optimization allow us to extend decisions to smart water systems in order to improve the efficiency of the water network and ensure more reliable and flexible operations, maximizing cost, environmental, and social savings associated with losses or failures. The data obtained in real time instantly update the network model towards digital water models, showing the characteristic parameters of pumps, valves, pressures, and flows, as well as hours of operation towards the lowest operating costs, in order to meet the requirement objectives for an efficient system.


Book
Water Systems towards New Future Challenges
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book comprises components associated with smart water which aims at the exploitation and building of more sustainable and technological water networks towards the water–energy nexus and system efficiency. The implementation of modeling frameworks for measuring the performance based on a set of relevant indicators and data applications and model interfaces provides better support for decisions towards greater sustainability and more flexible and safer solutions. The hydraulic, management, and structural models represent the most effective and viable way to predict the behavior of the water networks under a wide range of conditions of demand and system failures. The knowledge of reliable parameters is crucial to develop approach models and, therefore, positive decisions in real time to be implemented in smart water systems. On the other hand, the models of operation in real-time optimization allow us to extend decisions to smart water systems in order to improve the efficiency of the water network and ensure more reliable and flexible operations, maximizing cost, environmental, and social savings associated with losses or failures. The data obtained in real time instantly update the network model towards digital water models, showing the characteristic parameters of pumps, valves, pressures, and flows, as well as hours of operation towards the lowest operating costs, in order to meet the requirement objectives for an efficient system.


Book
Water Supply and Water Scarcity
Authors: --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Book includes selected papers that has been published in the Water journal Special Issue (SI) on Water Supply and Water Scarcity. Moreover, an overview of the SI is included. The papers selected for publication in the SI include review and research papers on water history, on water management issues under water scarcity regimes, on rainwater harvesting, on water quality and degradation, and on climatic variability impacts on water resources. Overall, the issue identify and highlight the main challenges in water sector, and particularly in management and protection of water resources and in use of alternative (non-conventional) water resources, especially in areas with demographic change and climate vulnerability in order to achieve sustainable and secure water supply. Furthermore, general guidelines and possible solutions for an improved and sophisticated water management system are proposed and discussed, such as the adoption of advanced technological solutions and practices that improve water-use efficiency and the use of alternative water resources, to address the growing environmental and health issues and to reduce the emerging conflicts among water users.

Keywords

Research & information: general --- Environmental economics --- drought --- early warning --- water scarcity --- water supply --- routine monitoring --- hydrologic modeling --- remote sensing --- GIS --- alternative water source --- rainwater harvesting --- arid and semi-arid areas --- hydraulics --- dividing flow manifold --- showerheads --- sprays --- dissolved oxygen --- climate change --- water budget --- general circulation model --- modeling --- stream flow changes --- soil water --- RCP --- Aculeo Lagoon --- Chile --- water demands --- water management --- rainwater harvesting system --- multi-storey residential building --- end-uses --- economic feasibility --- satisfaction survey --- ecological water demand --- reservoir ecological operation --- MIKE 11 model --- PHABSIM model --- watershed management --- water quality --- conventional farming --- organic farming --- nitrate --- residual sodium carbonate --- sodium adsorption ratio --- total dissolved solids --- irrigation practices --- Aztecs --- bronze age --- Byzantine times --- Chinese dynasties --- Egyptians --- Harappans --- Hellenic civilizations --- Incas --- medieval times --- Mayas --- Mesopotamia --- Minoans --- modern times --- Ottoman times --- Romans --- n/a --- water resources management --- water reuse --- climate variability --- circular economy --- sustainability --- long-term --- regional water supply planning --- alternative water supply --- projects --- expenditures --- investments --- conservation --- intermittent water supply --- pressure monitoring --- unreliable water supply --- pipe breaks --- water distribution system --- water system operation --- water scarcity regime --- water use efficiency --- rain harvesting --- desalination


Book
Advances in Modeling and Management of Urban Water Networks
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The Special Issue on Advances in Modeling and Management of Urban Water Networks (UWNs) explores four important topics of research in the context of UWNs: asset management, modeling of demand and hydraulics, energy recovery, and pipe burst identification and leakage reduction. In the first topic, the multi-objective optimization of interventions on the network is presented to find trade-off solutions between costs and efficiency. In the second topic, methodologies are presented to simulate and predict demand and to simulate network behavior in emergency scenarios. In the third topic, a methodology is presented for the multi-objective optimization of pump-as-turbine (PAT) installation sites in transmission mains. In the fourth topic, methodologies for pipe burst identification and leakage reduction are presented. As for the urban drainage systems (UDSs), the two explored topics are asset management, with a system upgrade to reduce flooding, and modeling of flow and water quality, with analyses on the transition from surface to pressurized flow, impact of water use reduction on the operation of UDSs, and sediment transport in pressurized pipes. The Special Issue also includes one paper dealing with the hydraulic modeling of an urban river with a complex cross-section.

Keywords

History of engineering & technology --- drainage network --- climate change --- rehabilitation --- optimization --- SWMM --- drainage networks --- flooding --- multi-objective optimization --- water network partition --- genetic algorithm --- hydraulic --- water quality --- actions --- asset management --- ANN --- prediction --- performance --- water utility --- water system --- NSGA-II --- GIS modeling --- leakage management --- urban water network management --- valve closing algorithm --- web 2.0 --- total suspended solids --- in-situ --- erosion --- sedimentation --- pressure pipe --- sewage --- water distribution systems --- pipe bursts --- hydraulic transients --- real-time control --- machine learning --- sediment transport model --- numerical simulation --- advection-dispersion equation --- water distribution networks --- transmission mains --- pump as turbine --- energy recovery --- hydropower --- multi-objective --- water consumption --- chaos theory --- local approximation --- Kelowna --- gene expression programming --- trapezoidal stretch --- transition stretch --- culvert --- open channel --- hydraulic factors --- sewer design --- stochastic sewer modelling --- wastewater quality --- household discharge --- reduced water consumption --- flow regime transition --- finite volume methods --- numerical oscillations --- numerical viscosity --- Preissmann slot model --- hydraulic simulation --- water demand --- emergency scenario --- intermittent water supply --- water management --- WaterGEMS software --- pressure control --- leakage reduction strategies --- water distribution system modeling --- urban drainage system modeling --- emergency scenarios --- leakage --- demand --- energy --- sediment transport


Book
Advances in Modeling and Management of Urban Water Networks
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The Special Issue on Advances in Modeling and Management of Urban Water Networks (UWNs) explores four important topics of research in the context of UWNs: asset management, modeling of demand and hydraulics, energy recovery, and pipe burst identification and leakage reduction. In the first topic, the multi-objective optimization of interventions on the network is presented to find trade-off solutions between costs and efficiency. In the second topic, methodologies are presented to simulate and predict demand and to simulate network behavior in emergency scenarios. In the third topic, a methodology is presented for the multi-objective optimization of pump-as-turbine (PAT) installation sites in transmission mains. In the fourth topic, methodologies for pipe burst identification and leakage reduction are presented. As for the urban drainage systems (UDSs), the two explored topics are asset management, with a system upgrade to reduce flooding, and modeling of flow and water quality, with analyses on the transition from surface to pressurized flow, impact of water use reduction on the operation of UDSs, and sediment transport in pressurized pipes. The Special Issue also includes one paper dealing with the hydraulic modeling of an urban river with a complex cross-section.

Keywords

History of engineering & technology --- drainage network --- climate change --- rehabilitation --- optimization --- SWMM --- drainage networks --- flooding --- multi-objective optimization --- water network partition --- genetic algorithm --- hydraulic --- water quality --- actions --- asset management --- ANN --- prediction --- performance --- water utility --- water system --- NSGA-II --- GIS modeling --- leakage management --- urban water network management --- valve closing algorithm --- web 2.0 --- total suspended solids --- in-situ --- erosion --- sedimentation --- pressure pipe --- sewage --- water distribution systems --- pipe bursts --- hydraulic transients --- real-time control --- machine learning --- sediment transport model --- numerical simulation --- advection-dispersion equation --- water distribution networks --- transmission mains --- pump as turbine --- energy recovery --- hydropower --- multi-objective --- water consumption --- chaos theory --- local approximation --- Kelowna --- gene expression programming --- trapezoidal stretch --- transition stretch --- culvert --- open channel --- hydraulic factors --- sewer design --- stochastic sewer modelling --- wastewater quality --- household discharge --- reduced water consumption --- flow regime transition --- finite volume methods --- numerical oscillations --- numerical viscosity --- Preissmann slot model --- hydraulic simulation --- water demand --- emergency scenario --- intermittent water supply --- water management --- WaterGEMS software --- pressure control --- leakage reduction strategies --- water distribution system modeling --- urban drainage system modeling --- emergency scenarios --- leakage --- demand --- energy --- sediment transport


Book
Water Supply and Water Scarcity
Authors: --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Book includes selected papers that has been published in the Water journal Special Issue (SI) on Water Supply and Water Scarcity. Moreover, an overview of the SI is included. The papers selected for publication in the SI include review and research papers on water history, on water management issues under water scarcity regimes, on rainwater harvesting, on water quality and degradation, and on climatic variability impacts on water resources. Overall, the issue identify and highlight the main challenges in water sector, and particularly in management and protection of water resources and in use of alternative (non-conventional) water resources, especially in areas with demographic change and climate vulnerability in order to achieve sustainable and secure water supply. Furthermore, general guidelines and possible solutions for an improved and sophisticated water management system are proposed and discussed, such as the adoption of advanced technological solutions and practices that improve water-use efficiency and the use of alternative water resources, to address the growing environmental and health issues and to reduce the emerging conflicts among water users.

Keywords

Research & information: general --- Environmental economics --- drought --- early warning --- water scarcity --- water supply --- routine monitoring --- hydrologic modeling --- remote sensing --- GIS --- alternative water source --- rainwater harvesting --- arid and semi-arid areas --- hydraulics --- dividing flow manifold --- showerheads --- sprays --- dissolved oxygen --- climate change --- water budget --- general circulation model --- modeling --- stream flow changes --- soil water --- RCP --- Aculeo Lagoon --- Chile --- water demands --- water management --- rainwater harvesting system --- multi-storey residential building --- end-uses --- economic feasibility --- satisfaction survey --- ecological water demand --- reservoir ecological operation --- MIKE 11 model --- PHABSIM model --- watershed management --- water quality --- conventional farming --- organic farming --- nitrate --- residual sodium carbonate --- sodium adsorption ratio --- total dissolved solids --- irrigation practices --- Aztecs --- bronze age --- Byzantine times --- Chinese dynasties --- Egyptians --- Harappans --- Hellenic civilizations --- Incas --- medieval times --- Mayas --- Mesopotamia --- Minoans --- modern times --- Ottoman times --- Romans --- n/a --- water resources management --- water reuse --- climate variability --- circular economy --- sustainability --- long-term --- regional water supply planning --- alternative water supply --- projects --- expenditures --- investments --- conservation --- intermittent water supply --- pressure monitoring --- unreliable water supply --- pipe breaks --- water distribution system --- water system operation --- water scarcity regime --- water use efficiency --- rain harvesting --- desalination

Listing 1 - 10 of 12 << page
of 2
>>
Sort by