Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULB (2)

ULiège (2)

VIVES (2)

More...

Resource type

book (6)


Language

English (6)


Year
From To Submit

2022 (3)

2020 (3)

Listing 1 - 6 of 6
Sort by

Book
Optimization of Motion Planning and Control for Automatic Machines, Robots and Multibody Systems
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The optimization of motion and trajectory planning is an effective and usually costless approach to improving the performance of robots, mechatronic systems, automatic machines and multibody systems. Indeed, wise planning increases precision and machine productivity, while reducing vibrations, motion time, actuation effort and energy consumption. On the other hand, the availability of optimized methods for motion planning allows for a cheaper and lighter system construction. The issue of motion planning is also tightly linked with the synthesis of high-performance feedback and feedforward control schemes, which can either enhance the effectiveness of motion planning or compensate for its gaps. To collect and disseminate a meaningful collection of these applications, this book proposes 15 novel research studies that cover different sub-areas, in the framework of motion planning and control.

Keywords

History of engineering & technology --- humanoid robot --- walk fast --- rotational slip --- ZMP --- gait planning --- quadruped robot --- whole robot control --- location trajectory --- dynamic gait --- fin stabilizer --- command-filtered backstepping --- sliding mode control --- prescribed performance --- disturbance observer --- OES --- inertial stability accuracy --- low-speed performance --- speed observation --- disturbance observation --- state-augmented Kalman filter --- composed control scheme --- fractional calculus --- FOPD controller --- underwater vehicle --- motion control --- modal analysis --- flexible multibody systems --- linearized models --- six-legged robot --- whole-body motion planning --- rugged terrain --- support --- swing --- gesture-based teleoperation --- robotic assembly --- force feedback --- compliant robot motion --- pickup manipulator --- adaptive genetic algorithm --- trajectory optimization --- improved artificial potential field method --- obstacle avoidance planning --- robust estimation --- dynamic model --- unknown but bounded noise --- extended set-membership filter --- dynamic balancing --- shaking force balancing --- acceleration control of the center of mass --- fully Cartesian coordinates --- natural coordinates --- parallel manipulators --- passive model --- biped walking --- Impact and contact --- friction force --- dissipative force --- energy efficiency --- robot --- motion design --- functional redundancy --- UR5 --- hybrid navigation system --- weighted-sum model --- a heuristic algorithm --- piecewise cubic Bézier curve --- mobile robot --- n/a


Book
Modelling and Control of Mechatronic and Robotic Systems, Volume II
Authors: --- ---
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

In modern times, mechatronic and robotic systems are developing at a faster pace than in the past, and research on novel solutions and applications of such devices are studied in both industrial and academic environments. The second volume of this Special Issue of Applied Sciences aims to disseminate the latest research achievements, ideas, and applications of the modeling and control of mechatronic and robotic systems, with particular emphasis on novel trends and challenges. We invited contributions to this Special Issue on topics including (but not limited to): modeling and control, path and trajectory planning, optimization problems, collaborative robotics, mechatronics, flexible multi-body systems, mobile robotics, and manufacturing applications.

Keywords

Technology: general issues --- History of engineering & technology --- wobble motor --- permeance --- magnetic circuit --- leakage flux --- electropermanent magnet --- force model --- inverse kinematics --- genetic algorithm --- workspace analysis --- multi-fingered anthropomorphic hand --- amphibious robot --- spherical robot --- assistant fin --- buoyancy --- hydrodynamic force --- robot --- crawler --- traction --- kinematics --- EOD Robot --- terrorist attacks --- hybrid control --- state machine --- Festo --- PLC --- friction force --- trout --- fish processing machine --- simulation --- vision based system --- humanoid robots --- robot design --- legged robots --- dynamic model --- harsh environment --- kinematic model --- mecanum wheel --- omnidirectional robot --- robotic platform --- surveillance --- flow-rate estimation --- automatic pouring machine --- extended Kalman filter --- mechatronics --- hysteresis --- advance trajectory control --- piezoelectric --- actuator --- neural networks --- robust control --- MPC --- foot location --- motion planning --- gait transitioning --- deep deterministic policy gradients --- snake manipulator --- data-driven --- accuracy --- 6DoF motion platform --- monitoring system --- crank arm mechanisms --- cable-driven parallel robots --- overconstrained robots --- design --- non-contact operations --- behavior-based --- climber robot --- control --- control architecture --- fault-tolerant --- legged robot --- optimization --- 3D printer --- Cartesian kinematics --- vibration analysis --- additive manufacturing --- mechanical design --- closed-kinematic chain manipulator (CKCM) --- sliding mode control (SMC) --- time-delay estimation (TDE) --- nonsingular fast terminal sliding mode control (NFTSMC) --- synchronization control --- model-free control --- n/a


Book
Modelling and Control of Mechatronic and Robotic Systems, Volume II
Authors: --- ---
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

In modern times, mechatronic and robotic systems are developing at a faster pace than in the past, and research on novel solutions and applications of such devices are studied in both industrial and academic environments. The second volume of this Special Issue of Applied Sciences aims to disseminate the latest research achievements, ideas, and applications of the modeling and control of mechatronic and robotic systems, with particular emphasis on novel trends and challenges. We invited contributions to this Special Issue on topics including (but not limited to): modeling and control, path and trajectory planning, optimization problems, collaborative robotics, mechatronics, flexible multi-body systems, mobile robotics, and manufacturing applications.

Keywords

Technology: general issues --- History of engineering & technology --- wobble motor --- permeance --- magnetic circuit --- leakage flux --- electropermanent magnet --- force model --- inverse kinematics --- genetic algorithm --- workspace analysis --- multi-fingered anthropomorphic hand --- amphibious robot --- spherical robot --- assistant fin --- buoyancy --- hydrodynamic force --- robot --- crawler --- traction --- kinematics --- EOD Robot --- terrorist attacks --- hybrid control --- state machine --- Festo --- PLC --- friction force --- trout --- fish processing machine --- simulation --- vision based system --- humanoid robots --- robot design --- legged robots --- dynamic model --- harsh environment --- kinematic model --- mecanum wheel --- omnidirectional robot --- robotic platform --- surveillance --- flow-rate estimation --- automatic pouring machine --- extended Kalman filter --- mechatronics --- hysteresis --- advance trajectory control --- piezoelectric --- actuator --- neural networks --- robust control --- MPC --- foot location --- motion planning --- gait transitioning --- deep deterministic policy gradients --- snake manipulator --- data-driven --- accuracy --- 6DoF motion platform --- monitoring system --- crank arm mechanisms --- cable-driven parallel robots --- overconstrained robots --- design --- non-contact operations --- behavior-based --- climber robot --- control --- control architecture --- fault-tolerant --- legged robot --- optimization --- 3D printer --- Cartesian kinematics --- vibration analysis --- additive manufacturing --- mechanical design --- closed-kinematic chain manipulator (CKCM) --- sliding mode control (SMC) --- time-delay estimation (TDE) --- nonsingular fast terminal sliding mode control (NFTSMC) --- synchronization control --- model-free control --- n/a


Book
Optimization of Motion Planning and Control for Automatic Machines, Robots and Multibody Systems
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The optimization of motion and trajectory planning is an effective and usually costless approach to improving the performance of robots, mechatronic systems, automatic machines and multibody systems. Indeed, wise planning increases precision and machine productivity, while reducing vibrations, motion time, actuation effort and energy consumption. On the other hand, the availability of optimized methods for motion planning allows for a cheaper and lighter system construction. The issue of motion planning is also tightly linked with the synthesis of high-performance feedback and feedforward control schemes, which can either enhance the effectiveness of motion planning or compensate for its gaps. To collect and disseminate a meaningful collection of these applications, this book proposes 15 novel research studies that cover different sub-areas, in the framework of motion planning and control.

Keywords

History of engineering & technology --- humanoid robot --- walk fast --- rotational slip --- ZMP --- gait planning --- quadruped robot --- whole robot control --- location trajectory --- dynamic gait --- fin stabilizer --- command-filtered backstepping --- sliding mode control --- prescribed performance --- disturbance observer --- OES --- inertial stability accuracy --- low-speed performance --- speed observation --- disturbance observation --- state-augmented Kalman filter --- composed control scheme --- fractional calculus --- FOPD controller --- underwater vehicle --- motion control --- modal analysis --- flexible multibody systems --- linearized models --- six-legged robot --- whole-body motion planning --- rugged terrain --- support --- swing --- gesture-based teleoperation --- robotic assembly --- force feedback --- compliant robot motion --- pickup manipulator --- adaptive genetic algorithm --- trajectory optimization --- improved artificial potential field method --- obstacle avoidance planning --- robust estimation --- dynamic model --- unknown but bounded noise --- extended set-membership filter --- dynamic balancing --- shaking force balancing --- acceleration control of the center of mass --- fully Cartesian coordinates --- natural coordinates --- parallel manipulators --- passive model --- biped walking --- Impact and contact --- friction force --- dissipative force --- energy efficiency --- robot --- motion design --- functional redundancy --- UR5 --- hybrid navigation system --- weighted-sum model --- a heuristic algorithm --- piecewise cubic Bézier curve --- mobile robot --- n/a


Book
Modelling and Control of Mechatronic and Robotic Systems, Volume II
Authors: --- ---
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

In modern times, mechatronic and robotic systems are developing at a faster pace than in the past, and research on novel solutions and applications of such devices are studied in both industrial and academic environments. The second volume of this Special Issue of Applied Sciences aims to disseminate the latest research achievements, ideas, and applications of the modeling and control of mechatronic and robotic systems, with particular emphasis on novel trends and challenges. We invited contributions to this Special Issue on topics including (but not limited to): modeling and control, path and trajectory planning, optimization problems, collaborative robotics, mechatronics, flexible multi-body systems, mobile robotics, and manufacturing applications.

Keywords

wobble motor --- permeance --- magnetic circuit --- leakage flux --- electropermanent magnet --- force model --- inverse kinematics --- genetic algorithm --- workspace analysis --- multi-fingered anthropomorphic hand --- amphibious robot --- spherical robot --- assistant fin --- buoyancy --- hydrodynamic force --- robot --- crawler --- traction --- kinematics --- EOD Robot --- terrorist attacks --- hybrid control --- state machine --- Festo --- PLC --- friction force --- trout --- fish processing machine --- simulation --- vision based system --- humanoid robots --- robot design --- legged robots --- dynamic model --- harsh environment --- kinematic model --- mecanum wheel --- omnidirectional robot --- robotic platform --- surveillance --- flow-rate estimation --- automatic pouring machine --- extended Kalman filter --- mechatronics --- hysteresis --- advance trajectory control --- piezoelectric --- actuator --- neural networks --- robust control --- MPC --- foot location --- motion planning --- gait transitioning --- deep deterministic policy gradients --- snake manipulator --- data-driven --- accuracy --- 6DoF motion platform --- monitoring system --- crank arm mechanisms --- cable-driven parallel robots --- overconstrained robots --- design --- non-contact operations --- behavior-based --- climber robot --- control --- control architecture --- fault-tolerant --- legged robot --- optimization --- 3D printer --- Cartesian kinematics --- vibration analysis --- additive manufacturing --- mechanical design --- closed-kinematic chain manipulator (CKCM) --- sliding mode control (SMC) --- time-delay estimation (TDE) --- nonsingular fast terminal sliding mode control (NFTSMC) --- synchronization control --- model-free control --- n/a


Book
Optimization of Motion Planning and Control for Automatic Machines, Robots and Multibody Systems
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The optimization of motion and trajectory planning is an effective and usually costless approach to improving the performance of robots, mechatronic systems, automatic machines and multibody systems. Indeed, wise planning increases precision and machine productivity, while reducing vibrations, motion time, actuation effort and energy consumption. On the other hand, the availability of optimized methods for motion planning allows for a cheaper and lighter system construction. The issue of motion planning is also tightly linked with the synthesis of high-performance feedback and feedforward control schemes, which can either enhance the effectiveness of motion planning or compensate for its gaps. To collect and disseminate a meaningful collection of these applications, this book proposes 15 novel research studies that cover different sub-areas, in the framework of motion planning and control.

Keywords

humanoid robot --- walk fast --- rotational slip --- ZMP --- gait planning --- quadruped robot --- whole robot control --- location trajectory --- dynamic gait --- fin stabilizer --- command-filtered backstepping --- sliding mode control --- prescribed performance --- disturbance observer --- OES --- inertial stability accuracy --- low-speed performance --- speed observation --- disturbance observation --- state-augmented Kalman filter --- composed control scheme --- fractional calculus --- FOPD controller --- underwater vehicle --- motion control --- modal analysis --- flexible multibody systems --- linearized models --- six-legged robot --- whole-body motion planning --- rugged terrain --- support --- swing --- gesture-based teleoperation --- robotic assembly --- force feedback --- compliant robot motion --- pickup manipulator --- adaptive genetic algorithm --- trajectory optimization --- improved artificial potential field method --- obstacle avoidance planning --- robust estimation --- dynamic model --- unknown but bounded noise --- extended set-membership filter --- dynamic balancing --- shaking force balancing --- acceleration control of the center of mass --- fully Cartesian coordinates --- natural coordinates --- parallel manipulators --- passive model --- biped walking --- Impact and contact --- friction force --- dissipative force --- energy efficiency --- robot --- motion design --- functional redundancy --- UR5 --- hybrid navigation system --- weighted-sum model --- a heuristic algorithm --- piecewise cubic Bézier curve --- mobile robot --- n/a

Listing 1 - 6 of 6
Sort by