Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULB (2)

ULiège (2)

VIVES (2)

More...

Resource type

book (4)


Language

English (4)


Year
From To Submit

2022 (1)

2020 (3)

Listing 1 - 4 of 4
Sort by

Book
New Trends in Catalysis for Sustainable CO2 Conversion
Authors: ---
ISBN: 3036559124 3036559116 Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue on “New Trends in Catalysis for Sustainable CO2 Conversion”, released in the Catalysts open access journal, shows new research about the development of catalysts and catalytic routes for CO2 valorization, in addition to the optimization of the reaction conditions for the process. This issue includes ten articles and three reviews about different innovative processes for CO2 conversion.Carbon capture and storage (CCS) is a physical process consisting of the separation the CO2 (emitted by industry and the combustion processes for energy generation) and its transportation to geological storage isolates it from the atmosphere in the long term. However, the most promising routes for CO2 mitigation are those pursuing its catalytic valorization. By applying specific catalysts and suitable operating conditions, CO2 molecules react with other components to form longer chains (i.e., hydrocarbons). Accordingly, effort should be made to catalytically valorize CO2 (alone or co-fed with syngas) as an alternative way of reducing greenhouse gas emissions and obtaining high-value fuels and chemicals. Carbon capture and utilization (CCU) is a developing field with significant demand for research in the following aspects:The development of new catalysts, catalytic routes, and technologies for CO2 conversion;The study of new processes for obtaining fuels and chemicals from CO2;Optimization of the catalysts and the reaction conditions for these processes;Further steps in advanced processes using CO2-rich feeds (H2+CO2 or CO2 mixed with syngas), increasing product yields.

Keywords

Technology: general issues --- History of engineering & technology --- Environmental science, engineering & technology --- carbon dioxide --- hydrogenation --- catalyst --- gas hourly space velocity (GHSV) --- fixed-bed reactor --- CO2–H2O photo-co-processing --- VIS-light driven reactions --- CO2 reduction --- photocatalysts properties --- soft oxidant --- oxidation --- dehydrogenation --- nano-catalyst --- electrochemical reduction of CO2 --- ionic liquids --- propylene carbonate --- imidazolium cation --- greenhouse gas --- climate change --- CO2 decomposition --- CO2 utilization --- SrFeO3−x --- CO2 methanation --- Ni-xSi/ZrO2 --- Si promotion --- oxygen vacancies --- CO2 hydrogenation --- light olefins --- catalyst deactivation --- CO2-Fischer-Tropsch (CO2-FT) --- iron-based catalysts --- methanol to olefins --- bifunctional composite catalysts --- SAPO-34 --- photocatalysis --- carbon-TiO2 --- nanocarbon --- carbon allotropes --- carbon nanotubes --- carbon nanofibers --- carbon nano-onions --- carbon dioxide electrolysis --- molten carbonate --- greenhouse gas mitigation --- cycloaddition --- ionic liquid --- deep eutectic solvents --- onium salt --- homogeneous catalysts --- heterogeneous catalysis --- CO2 conversion --- methane --- hydrocarbons --- iron oxide --- copper nanoparticles --- biomass --- Fischer–Tropsch synthesis --- carbon-supported iron catalyst --- gasoline --- diesel --- n/a --- CO2-H2O photo-co-processing --- Fischer-Tropsch synthesis


Book
Catalysis for the Production of Sustainable Fuels and Chemicals
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Catalysis, in the industrial production of chemicals, fuels, and materials, accounts for more than half of gross material production worldwide. Heterogeneous catalysis enables fast and selective chemical transformations, resulting in superior product yield and facilitating catalyst separation and recovery. The synthesis of novel catalysts has emerged as a hot topic for process and product development with numerous research publications and patents. Hence, development of efficient catalysts and their applications is important for sustainable energy production and use, green chemicals production and use, and economic growth. This Special Issue discusses recent developments related to catalysis for the production of sustainable fuels and chemicals and traverses many new frontiers of catalysis including synthesis, characterization, catalytic performances, reaction kinetics and modelling, as well as applications of catalysts for the production of biofuels, synthesis gas, and other green products. This covers the current state-of-the-art catalysis research applied to bioenergy, organic transformation, carbon–carbon and carbon–heteroatoms, reforming, hydrogenation, hydrodesulfurization, hydrodenitrogenation, hydrodemetalization, Fischer–Tropsch synthesis, to name a few. This book highlights new avenues in catalysis including catalyst preparation methods, analytical tools for catalyst characterization, and techno-economic assessment to enhance a chemical or biological transformation process using catalysts for a betterment of industry, academia and society.

Keywords

History of engineering & technology --- HDO --- sulfide catalyst --- NiMo/Al2O3 --- phospholipid --- fatty acid --- choline --- oxidative desulfurization --- oxidative denitrogenation --- hydrotreating --- XPS --- activated carbon --- tert-butyl hydroperoxide --- biofuel --- biodiesel --- hydrocarbon --- waste --- glycerol hydrogenolysis --- in situ hydrogen --- methanol steam reforming --- Ni/Cu/ZnO/Al2O3 catalysts --- chilean natural zeolite --- Brønsted acid sites --- bio-oil upgrade --- catalytic pyrolysis --- nitrogen-doping --- iron nitrides --- light olefins --- CO hydrogenation --- KMnO4 pretreatment --- dry reforming methane (DRM) --- methane --- carbon dioxide --- microwave --- conversion --- catalyst --- selectivity --- thermal integration --- catalyst support --- CoMo sulfided catalyst --- deoxygenation --- cracking and polymerization --- hydrogenation and dehydrogenation --- waste cooking oil --- artificial neural network --- kinetic modeling --- cobalt-praseodymium (III) oxide --- CO-rich hydrogen --- methane dry reforming --- hydrodeoxygenation --- Ni/KIT-6 --- ethyl acetate --- CO2 activation --- methanol synthesis --- atomic layer deposition --- copper nanoparticles --- zinc oxide atomic layer --- hydroprocessing --- FeCu catalysts --- jet fuel --- oleic acid --- catalytic conversion --- catalyst acidity and basicity --- product distribution --- reaction pathways --- molybdenum phosphide --- methyl palmitate --- isomerization --- carboxylic acids upgrading --- ketonization --- deuterated acetic acid --- acetone D-isotopomers distribution --- H/D exchange --- inverse deuterium kinetic isotope effect --- kinetic parameters --- activation energy --- catalytic pyrolysis of biomass --- bio-oil --- sustainable fuels and chemicals --- hydrogenolysis --- desulfurization and denitrogenation --- CO2 utilization --- pyrolysis and cracking --- syngas and hydrogen --- biomass and bio-oil --- catalysis


Book
Catalysis for the Production of Sustainable Fuels and Chemicals
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Catalysis, in the industrial production of chemicals, fuels, and materials, accounts for more than half of gross material production worldwide. Heterogeneous catalysis enables fast and selective chemical transformations, resulting in superior product yield and facilitating catalyst separation and recovery. The synthesis of novel catalysts has emerged as a hot topic for process and product development with numerous research publications and patents. Hence, development of efficient catalysts and their applications is important for sustainable energy production and use, green chemicals production and use, and economic growth. This Special Issue discusses recent developments related to catalysis for the production of sustainable fuels and chemicals and traverses many new frontiers of catalysis including synthesis, characterization, catalytic performances, reaction kinetics and modelling, as well as applications of catalysts for the production of biofuels, synthesis gas, and other green products. This covers the current state-of-the-art catalysis research applied to bioenergy, organic transformation, carbon–carbon and carbon–heteroatoms, reforming, hydrogenation, hydrodesulfurization, hydrodenitrogenation, hydrodemetalization, Fischer–Tropsch synthesis, to name a few. This book highlights new avenues in catalysis including catalyst preparation methods, analytical tools for catalyst characterization, and techno-economic assessment to enhance a chemical or biological transformation process using catalysts for a betterment of industry, academia and society.

Keywords

History of engineering & technology --- HDO --- sulfide catalyst --- NiMo/Al2O3 --- phospholipid --- fatty acid --- choline --- oxidative desulfurization --- oxidative denitrogenation --- hydrotreating --- XPS --- activated carbon --- tert-butyl hydroperoxide --- biofuel --- biodiesel --- hydrocarbon --- waste --- glycerol hydrogenolysis --- in situ hydrogen --- methanol steam reforming --- Ni/Cu/ZnO/Al2O3 catalysts --- chilean natural zeolite --- Brønsted acid sites --- bio-oil upgrade --- catalytic pyrolysis --- nitrogen-doping --- iron nitrides --- light olefins --- CO hydrogenation --- KMnO4 pretreatment --- dry reforming methane (DRM) --- methane --- carbon dioxide --- microwave --- conversion --- catalyst --- selectivity --- thermal integration --- catalyst support --- CoMo sulfided catalyst --- deoxygenation --- cracking and polymerization --- hydrogenation and dehydrogenation --- waste cooking oil --- artificial neural network --- kinetic modeling --- cobalt-praseodymium (III) oxide --- CO-rich hydrogen --- methane dry reforming --- hydrodeoxygenation --- Ni/KIT-6 --- ethyl acetate --- CO2 activation --- methanol synthesis --- atomic layer deposition --- copper nanoparticles --- zinc oxide atomic layer --- hydroprocessing --- FeCu catalysts --- jet fuel --- oleic acid --- catalytic conversion --- catalyst acidity and basicity --- product distribution --- reaction pathways --- molybdenum phosphide --- methyl palmitate --- isomerization --- carboxylic acids upgrading --- ketonization --- deuterated acetic acid --- acetone D-isotopomers distribution --- H/D exchange --- inverse deuterium kinetic isotope effect --- kinetic parameters --- activation energy --- catalytic pyrolysis of biomass --- bio-oil --- sustainable fuels and chemicals --- hydrogenolysis --- desulfurization and denitrogenation --- CO2 utilization --- pyrolysis and cracking --- syngas and hydrogen --- biomass and bio-oil --- catalysis


Book
Catalysis for the Production of Sustainable Fuels and Chemicals
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Catalysis, in the industrial production of chemicals, fuels, and materials, accounts for more than half of gross material production worldwide. Heterogeneous catalysis enables fast and selective chemical transformations, resulting in superior product yield and facilitating catalyst separation and recovery. The synthesis of novel catalysts has emerged as a hot topic for process and product development with numerous research publications and patents. Hence, development of efficient catalysts and their applications is important for sustainable energy production and use, green chemicals production and use, and economic growth. This Special Issue discusses recent developments related to catalysis for the production of sustainable fuels and chemicals and traverses many new frontiers of catalysis including synthesis, characterization, catalytic performances, reaction kinetics and modelling, as well as applications of catalysts for the production of biofuels, synthesis gas, and other green products. This covers the current state-of-the-art catalysis research applied to bioenergy, organic transformation, carbon–carbon and carbon–heteroatoms, reforming, hydrogenation, hydrodesulfurization, hydrodenitrogenation, hydrodemetalization, Fischer–Tropsch synthesis, to name a few. This book highlights new avenues in catalysis including catalyst preparation methods, analytical tools for catalyst characterization, and techno-economic assessment to enhance a chemical or biological transformation process using catalysts for a betterment of industry, academia and society.

Keywords

HDO --- sulfide catalyst --- NiMo/Al2O3 --- phospholipid --- fatty acid --- choline --- oxidative desulfurization --- oxidative denitrogenation --- hydrotreating --- XPS --- activated carbon --- tert-butyl hydroperoxide --- biofuel --- biodiesel --- hydrocarbon --- waste --- glycerol hydrogenolysis --- in situ hydrogen --- methanol steam reforming --- Ni/Cu/ZnO/Al2O3 catalysts --- chilean natural zeolite --- Brønsted acid sites --- bio-oil upgrade --- catalytic pyrolysis --- nitrogen-doping --- iron nitrides --- light olefins --- CO hydrogenation --- KMnO4 pretreatment --- dry reforming methane (DRM) --- methane --- carbon dioxide --- microwave --- conversion --- catalyst --- selectivity --- thermal integration --- catalyst support --- CoMo sulfided catalyst --- deoxygenation --- cracking and polymerization --- hydrogenation and dehydrogenation --- waste cooking oil --- artificial neural network --- kinetic modeling --- cobalt-praseodymium (III) oxide --- CO-rich hydrogen --- methane dry reforming --- hydrodeoxygenation --- Ni/KIT-6 --- ethyl acetate --- CO2 activation --- methanol synthesis --- atomic layer deposition --- copper nanoparticles --- zinc oxide atomic layer --- hydroprocessing --- FeCu catalysts --- jet fuel --- oleic acid --- catalytic conversion --- catalyst acidity and basicity --- product distribution --- reaction pathways --- molybdenum phosphide --- methyl palmitate --- isomerization --- carboxylic acids upgrading --- ketonization --- deuterated acetic acid --- acetone D-isotopomers distribution --- H/D exchange --- inverse deuterium kinetic isotope effect --- kinetic parameters --- activation energy --- catalytic pyrolysis of biomass --- bio-oil --- sustainable fuels and chemicals --- hydrogenolysis --- desulfurization and denitrogenation --- CO2 utilization --- pyrolysis and cracking --- syngas and hydrogen --- biomass and bio-oil --- catalysis

Listing 1 - 4 of 4
Sort by