Narrow your search

Library

FARO (3)

KU Leuven (3)

LUCA School of Arts (3)

Odisee (3)

Thomas More Kempen (3)

Thomas More Mechelen (3)

UCLL (3)

ULB (3)

ULiège (3)

VIVES (3)

More...

Resource type

book (9)


Language

English (9)


Year
From To Submit

2020 (9)

Listing 1 - 9 of 9
Sort by

Book
Radar Imaging in Challenging Scenarios from Smart and Flexible Platforms
Authors: --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute


Book
Radar Imaging in Challenging Scenarios from Smart and Flexible Platforms
Authors: --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute


Book
Radar Imaging in Challenging Scenarios from Smart and Flexible Platforms
Authors: --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute


Book
Remote Sensing in Applied Geophysics
Authors: --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The Special Issue is focused on recent and upcoming advances in the combined application of remote sensing and applied geophysics. Applied geophysics analyzes the distribution of physical properties in the subsurface for a wide range of geological, engineering, and environmental applications at different scales. Seismic, electrical, magnetic, and electromagnetic methods are among the most applied and well-established geophysical techniques. These methods share the advantages of being non-invasive and exploring wide areas of investigation with respect to conventional methods (e.g., drilling). Geophysical surveys are usually carried out deploying or moving the appropriate instrumentation directly on the ground surface. However, recent technological advances have resulting in the development of innovative acquisition systems becoming more typical of the remote sensing community (e.g., airborne surveys). While applied geophysics mainly focuses on the subsurface, typical remote sensing techniques have the ability to accurately image the Earth’s surface with high-resolution investigations carried out by means of terrestrial, airborne, or satellite-based platforms. The integration of surface and subsurface information is often crucial for several purposes, including the processing of geophysical data, the characterization and time-lapse monitoring of surface and near-surface targets, and the reconstruction of highly detailed and comprehensive 3D models of the investigated areas. Recent contributions showing the added value of surface reconstruction and/or monitoring in the processing, interpretation, and cross-comparison of geophysical techniques for archaeological, environmental, and engineering studies are collected in this book. Pioneering geophysical acquisitions by means of innovative remote systems are also presented.

Keywords

Research & information: general --- Alpine glaciers --- Belvedere Glacier --- ice thickness estimation --- ice bottom morphology and properties --- ground-penetrating radar (GPR) --- single-station passive seismic measurements --- horizontal-to-vertical spectral ratio (HVSR) --- archaeological prospection --- automated resistivity profiling ARP --- electrical resistivity survey --- multi-channel ground penetrating radar --- geophysical methods integration --- Chang’E-4 --- lunar penetrating radar (LPR) --- 3D velocity spectrum --- properties analysis --- remote sensing and GIS --- field geophysics --- groundwater potentiality --- West Qena --- Egypt --- mine collapse --- anthropogenic hazard --- seismology --- GNSS --- InSAR --- post-seismic deformation mechanism --- InSAR time series algorithm --- Kermanshah earthquake --- viscoelastic relaxation --- near-surface geophysics --- LiDAR --- magnetic gradiometry --- surface magnetic susceptibility --- electromagnetic induction --- Middle Woodland period --- Hopewell archaeology --- depth inversion --- sedimentary processes --- Autonomous Surface Vehicles (ASV) --- marine geophysics --- shallow water environments --- repeated 4D surveys --- NAIADI Project (New Autonomous/automatIc systems for the study AnD monitoring of aquatic envIronments) --- electrical resistivity tomography (ERT) --- frequency domain electromagnetic (FDEM) --- archaeology --- terramare --- bronze age --- elastic full waveform inversion --- acoustic-elastic coupled --- ocean bottom seismic --- multicomponent --- multiparameter --- ground penetrating radar (GPR) --- moisture content --- velocity analysis --- optimal gather --- passive seismic interferometry --- surface wave --- inversion --- shear-wave velocity --- ambient noise --- dispersion curve --- aerial archaeology --- landscape archaeology --- frequency-domain electromagnetic methods (FDEM) --- paleochannel --- Snow Eagle 601 --- aerogeophysics --- Princess Elizabeth Land --- ice-penetrating radar --- Antarctic ice sheet --- n/a --- Chang'E-4


Book
Remote Sensing in Applied Geophysics
Authors: --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The Special Issue is focused on recent and upcoming advances in the combined application of remote sensing and applied geophysics. Applied geophysics analyzes the distribution of physical properties in the subsurface for a wide range of geological, engineering, and environmental applications at different scales. Seismic, electrical, magnetic, and electromagnetic methods are among the most applied and well-established geophysical techniques. These methods share the advantages of being non-invasive and exploring wide areas of investigation with respect to conventional methods (e.g., drilling). Geophysical surveys are usually carried out deploying or moving the appropriate instrumentation directly on the ground surface. However, recent technological advances have resulting in the development of innovative acquisition systems becoming more typical of the remote sensing community (e.g., airborne surveys). While applied geophysics mainly focuses on the subsurface, typical remote sensing techniques have the ability to accurately image the Earth’s surface with high-resolution investigations carried out by means of terrestrial, airborne, or satellite-based platforms. The integration of surface and subsurface information is often crucial for several purposes, including the processing of geophysical data, the characterization and time-lapse monitoring of surface and near-surface targets, and the reconstruction of highly detailed and comprehensive 3D models of the investigated areas. Recent contributions showing the added value of surface reconstruction and/or monitoring in the processing, interpretation, and cross-comparison of geophysical techniques for archaeological, environmental, and engineering studies are collected in this book. Pioneering geophysical acquisitions by means of innovative remote systems are also presented.

Keywords

Research & information: general --- Alpine glaciers --- Belvedere Glacier --- ice thickness estimation --- ice bottom morphology and properties --- ground-penetrating radar (GPR) --- single-station passive seismic measurements --- horizontal-to-vertical spectral ratio (HVSR) --- archaeological prospection --- automated resistivity profiling ARP --- electrical resistivity survey --- multi-channel ground penetrating radar --- geophysical methods integration --- Chang’E-4 --- lunar penetrating radar (LPR) --- 3D velocity spectrum --- properties analysis --- remote sensing and GIS --- field geophysics --- groundwater potentiality --- West Qena --- Egypt --- mine collapse --- anthropogenic hazard --- seismology --- GNSS --- InSAR --- post-seismic deformation mechanism --- InSAR time series algorithm --- Kermanshah earthquake --- viscoelastic relaxation --- near-surface geophysics --- LiDAR --- magnetic gradiometry --- surface magnetic susceptibility --- electromagnetic induction --- Middle Woodland period --- Hopewell archaeology --- depth inversion --- sedimentary processes --- Autonomous Surface Vehicles (ASV) --- marine geophysics --- shallow water environments --- repeated 4D surveys --- NAIADI Project (New Autonomous/automatIc systems for the study AnD monitoring of aquatic envIronments) --- electrical resistivity tomography (ERT) --- frequency domain electromagnetic (FDEM) --- archaeology --- terramare --- bronze age --- elastic full waveform inversion --- acoustic-elastic coupled --- ocean bottom seismic --- multicomponent --- multiparameter --- ground penetrating radar (GPR) --- moisture content --- velocity analysis --- optimal gather --- passive seismic interferometry --- surface wave --- inversion --- shear-wave velocity --- ambient noise --- dispersion curve --- aerial archaeology --- landscape archaeology --- frequency-domain electromagnetic methods (FDEM) --- paleochannel --- Snow Eagle 601 --- aerogeophysics --- Princess Elizabeth Land --- ice-penetrating radar --- Antarctic ice sheet --- n/a --- Chang'E-4


Book
Remote Sensing in Applied Geophysics
Authors: --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The Special Issue is focused on recent and upcoming advances in the combined application of remote sensing and applied geophysics. Applied geophysics analyzes the distribution of physical properties in the subsurface for a wide range of geological, engineering, and environmental applications at different scales. Seismic, electrical, magnetic, and electromagnetic methods are among the most applied and well-established geophysical techniques. These methods share the advantages of being non-invasive and exploring wide areas of investigation with respect to conventional methods (e.g., drilling). Geophysical surveys are usually carried out deploying or moving the appropriate instrumentation directly on the ground surface. However, recent technological advances have resulting in the development of innovative acquisition systems becoming more typical of the remote sensing community (e.g., airborne surveys). While applied geophysics mainly focuses on the subsurface, typical remote sensing techniques have the ability to accurately image the Earth’s surface with high-resolution investigations carried out by means of terrestrial, airborne, or satellite-based platforms. The integration of surface and subsurface information is often crucial for several purposes, including the processing of geophysical data, the characterization and time-lapse monitoring of surface and near-surface targets, and the reconstruction of highly detailed and comprehensive 3D models of the investigated areas. Recent contributions showing the added value of surface reconstruction and/or monitoring in the processing, interpretation, and cross-comparison of geophysical techniques for archaeological, environmental, and engineering studies are collected in this book. Pioneering geophysical acquisitions by means of innovative remote systems are also presented.

Keywords

Alpine glaciers --- Belvedere Glacier --- ice thickness estimation --- ice bottom morphology and properties --- ground-penetrating radar (GPR) --- single-station passive seismic measurements --- horizontal-to-vertical spectral ratio (HVSR) --- archaeological prospection --- automated resistivity profiling ARP --- electrical resistivity survey --- multi-channel ground penetrating radar --- geophysical methods integration --- Chang’E-4 --- lunar penetrating radar (LPR) --- 3D velocity spectrum --- properties analysis --- remote sensing and GIS --- field geophysics --- groundwater potentiality --- West Qena --- Egypt --- mine collapse --- anthropogenic hazard --- seismology --- GNSS --- InSAR --- post-seismic deformation mechanism --- InSAR time series algorithm --- Kermanshah earthquake --- viscoelastic relaxation --- near-surface geophysics --- LiDAR --- magnetic gradiometry --- surface magnetic susceptibility --- electromagnetic induction --- Middle Woodland period --- Hopewell archaeology --- depth inversion --- sedimentary processes --- Autonomous Surface Vehicles (ASV) --- marine geophysics --- shallow water environments --- repeated 4D surveys --- NAIADI Project (New Autonomous/automatIc systems for the study AnD monitoring of aquatic envIronments) --- electrical resistivity tomography (ERT) --- frequency domain electromagnetic (FDEM) --- archaeology --- terramare --- bronze age --- elastic full waveform inversion --- acoustic-elastic coupled --- ocean bottom seismic --- multicomponent --- multiparameter --- ground penetrating radar (GPR) --- moisture content --- velocity analysis --- optimal gather --- passive seismic interferometry --- surface wave --- inversion --- shear-wave velocity --- ambient noise --- dispersion curve --- aerial archaeology --- landscape archaeology --- frequency-domain electromagnetic methods (FDEM) --- paleochannel --- Snow Eagle 601 --- aerogeophysics --- Princess Elizabeth Land --- ice-penetrating radar --- Antarctic ice sheet --- n/a --- Chang'E-4


Book
Advanced Technology Related to Radar Signal, Imaging, and Radar Cross-Section Measurement
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Radar-related technology is mainly processed within the time and frequency domains but, at the same time, is a multi-dimensional integrated system including a spatial domain for transmitting and receiving electromagnetic waves. As a result of the enormous technological advancements of the pioneers actively discussed in this book, research and development in multi-dimensional undeveloped areas is expected to continue. This book contains state-of-the-art work that should guide your research.

Keywords

History of engineering & technology --- inverse synthetic aperture ladar (ISAL) --- maneuvering target --- integral cubic phase function (ICPF) --- fractional Fourier transform (FRFT) --- non-uniform fast Fourier transform (NUFFT) --- CLEAN technique --- simultaneous polarimetric radar --- constant modulus sequences --- correlation properties --- doppler tolerance --- saliency preprocessing LLC --- saliency detection --- image processing --- scene classification --- antenna array --- automatic guided vehicle --- DoA/DoD estimation --- MIMO radar --- direct position determination --- Doppler --- Doppler rate --- maximum likelihood estimator --- coherent pulse trains --- single moving sensor --- Cramer–Rao lower bound --- bistatic MIMO radar --- DOD/DOA estimation --- mutual coupling --- off-grid sparse problem --- unmanned aerial vehicle --- clustering methods --- man-made targets --- synthetic aperture radar (SAR) --- inverse synthetic aperture radar (ISAR) --- polarimetric decomposition --- Synthetic Aperture Radar (SAR) --- microwave imaging --- constitutive parameters --- conductivity --- permittivity --- tomography --- RF MEMS --- switch --- analytical approach --- low control voltage --- high switching speed --- high reliability --- radar echo cancellation --- frequency shifting modulation --- interrupted sampling --- radar jamming --- deception jamming --- remote sensing --- SAR --- radon transform --- speckle noise filtering --- maritime traffic monitoring --- wake detection and analysis --- synthetic aperture radar --- differential SAR tomography --- squinted SAR --- 3-D deformation --- 2-D PPS --- maneuvering target detection --- coherent integration --- motion parameter estimation --- second-order phase difference (SoPD) --- time-frequency analysis --- image fusion --- sparse representation --- hyperbolic tangent function --- guided filter --- narrowband interference separation --- block sparse Bayesian learning --- sensing matrix optimization --- block coherence measure --- bistatic inverse synthetic aperture radar --- linear geometry distortion --- prior information --- least square error --- lunar penetrating radar --- local correlation --- SNR --- K-L transform --- seislet transform --- generative adversarial nets --- through-wall radar imaging --- multipath ghost suppression --- generator and discriminator --- ultrahigh resolution --- spaceborne --- curved orbit --- series reversion --- singular value decomposition (SVD) --- deramping-based approach --- crosshole ground penetrating radar (GPR) --- Bayesian inversion --- Markov chain Monte Carlo (MCMC) --- forward model --- modeling error --- discrete cosine transform (DCT) --- through-wall imaging --- contrast target detection --- clutter reduction --- entropy thresholding --- low-rank approximation --- S-transformation --- ISAR --- micro-Doppler --- synchrosqueezing --- PBR (passive bistatic radar) --- clutter suppression --- non-uniform grid --- dilation morphology --- passive bistatic radar --- phased array radar --- parameter estimation --- aircraft surveillance --- GPR --- seasonal permafrost --- electromagnetic wave attribute --- relative water content --- marine radar --- wind direction retrieval --- small wind streak --- local gradient method --- adaptive reduced method --- energy spectrum method --- metamaterial absorber --- double negative --- dual-band --- FMCW radio altimeter --- methodological error --- critical height --- altitude measurement accuracy --- height pulses --- ultra-wide frequency deviation --- sparse recovery --- wideband noise interference --- dechirping --- subspace extraction --- denoising detection --- orthogonal matching pursuit --- pulse radar --- rotating target --- micro-motion feature extraction --- interrupted transmitting and receiving (ITR) --- dual-polarized radar --- DOA estimation --- atomic norm --- comprehensive SAR --- multiparametric SAR observation --- discrete scatterer model --- n/a --- Cramer-Rao lower bound


Book
Advanced Technology Related to Radar Signal, Imaging, and Radar Cross-Section Measurement
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Radar-related technology is mainly processed within the time and frequency domains but, at the same time, is a multi-dimensional integrated system including a spatial domain for transmitting and receiving electromagnetic waves. As a result of the enormous technological advancements of the pioneers actively discussed in this book, research and development in multi-dimensional undeveloped areas is expected to continue. This book contains state-of-the-art work that should guide your research.

Keywords

History of engineering & technology --- inverse synthetic aperture ladar (ISAL) --- maneuvering target --- integral cubic phase function (ICPF) --- fractional Fourier transform (FRFT) --- non-uniform fast Fourier transform (NUFFT) --- CLEAN technique --- simultaneous polarimetric radar --- constant modulus sequences --- correlation properties --- doppler tolerance --- saliency preprocessing LLC --- saliency detection --- image processing --- scene classification --- antenna array --- automatic guided vehicle --- DoA/DoD estimation --- MIMO radar --- direct position determination --- Doppler --- Doppler rate --- maximum likelihood estimator --- coherent pulse trains --- single moving sensor --- Cramer–Rao lower bound --- bistatic MIMO radar --- DOD/DOA estimation --- mutual coupling --- off-grid sparse problem --- unmanned aerial vehicle --- clustering methods --- man-made targets --- synthetic aperture radar (SAR) --- inverse synthetic aperture radar (ISAR) --- polarimetric decomposition --- Synthetic Aperture Radar (SAR) --- microwave imaging --- constitutive parameters --- conductivity --- permittivity --- tomography --- RF MEMS --- switch --- analytical approach --- low control voltage --- high switching speed --- high reliability --- radar echo cancellation --- frequency shifting modulation --- interrupted sampling --- radar jamming --- deception jamming --- remote sensing --- SAR --- radon transform --- speckle noise filtering --- maritime traffic monitoring --- wake detection and analysis --- synthetic aperture radar --- differential SAR tomography --- squinted SAR --- 3-D deformation --- 2-D PPS --- maneuvering target detection --- coherent integration --- motion parameter estimation --- second-order phase difference (SoPD) --- time-frequency analysis --- image fusion --- sparse representation --- hyperbolic tangent function --- guided filter --- narrowband interference separation --- block sparse Bayesian learning --- sensing matrix optimization --- block coherence measure --- bistatic inverse synthetic aperture radar --- linear geometry distortion --- prior information --- least square error --- lunar penetrating radar --- local correlation --- SNR --- K-L transform --- seislet transform --- generative adversarial nets --- through-wall radar imaging --- multipath ghost suppression --- generator and discriminator --- ultrahigh resolution --- spaceborne --- curved orbit --- series reversion --- singular value decomposition (SVD) --- deramping-based approach --- crosshole ground penetrating radar (GPR) --- Bayesian inversion --- Markov chain Monte Carlo (MCMC) --- forward model --- modeling error --- discrete cosine transform (DCT) --- through-wall imaging --- contrast target detection --- clutter reduction --- entropy thresholding --- low-rank approximation --- S-transformation --- ISAR --- micro-Doppler --- synchrosqueezing --- PBR (passive bistatic radar) --- clutter suppression --- non-uniform grid --- dilation morphology --- passive bistatic radar --- phased array radar --- parameter estimation --- aircraft surveillance --- GPR --- seasonal permafrost --- electromagnetic wave attribute --- relative water content --- marine radar --- wind direction retrieval --- small wind streak --- local gradient method --- adaptive reduced method --- energy spectrum method --- metamaterial absorber --- double negative --- dual-band --- FMCW radio altimeter --- methodological error --- critical height --- altitude measurement accuracy --- height pulses --- ultra-wide frequency deviation --- sparse recovery --- wideband noise interference --- dechirping --- subspace extraction --- denoising detection --- orthogonal matching pursuit --- pulse radar --- rotating target --- micro-motion feature extraction --- interrupted transmitting and receiving (ITR) --- dual-polarized radar --- DOA estimation --- atomic norm --- comprehensive SAR --- multiparametric SAR observation --- discrete scatterer model --- n/a --- Cramer-Rao lower bound


Book
Advanced Technology Related to Radar Signal, Imaging, and Radar Cross-Section Measurement
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Radar-related technology is mainly processed within the time and frequency domains but, at the same time, is a multi-dimensional integrated system including a spatial domain for transmitting and receiving electromagnetic waves. As a result of the enormous technological advancements of the pioneers actively discussed in this book, research and development in multi-dimensional undeveloped areas is expected to continue. This book contains state-of-the-art work that should guide your research.

Keywords

inverse synthetic aperture ladar (ISAL) --- maneuvering target --- integral cubic phase function (ICPF) --- fractional Fourier transform (FRFT) --- non-uniform fast Fourier transform (NUFFT) --- CLEAN technique --- simultaneous polarimetric radar --- constant modulus sequences --- correlation properties --- doppler tolerance --- saliency preprocessing LLC --- saliency detection --- image processing --- scene classification --- antenna array --- automatic guided vehicle --- DoA/DoD estimation --- MIMO radar --- direct position determination --- Doppler --- Doppler rate --- maximum likelihood estimator --- coherent pulse trains --- single moving sensor --- Cramer–Rao lower bound --- bistatic MIMO radar --- DOD/DOA estimation --- mutual coupling --- off-grid sparse problem --- unmanned aerial vehicle --- clustering methods --- man-made targets --- synthetic aperture radar (SAR) --- inverse synthetic aperture radar (ISAR) --- polarimetric decomposition --- Synthetic Aperture Radar (SAR) --- microwave imaging --- constitutive parameters --- conductivity --- permittivity --- tomography --- RF MEMS --- switch --- analytical approach --- low control voltage --- high switching speed --- high reliability --- radar echo cancellation --- frequency shifting modulation --- interrupted sampling --- radar jamming --- deception jamming --- remote sensing --- SAR --- radon transform --- speckle noise filtering --- maritime traffic monitoring --- wake detection and analysis --- synthetic aperture radar --- differential SAR tomography --- squinted SAR --- 3-D deformation --- 2-D PPS --- maneuvering target detection --- coherent integration --- motion parameter estimation --- second-order phase difference (SoPD) --- time-frequency analysis --- image fusion --- sparse representation --- hyperbolic tangent function --- guided filter --- narrowband interference separation --- block sparse Bayesian learning --- sensing matrix optimization --- block coherence measure --- bistatic inverse synthetic aperture radar --- linear geometry distortion --- prior information --- least square error --- lunar penetrating radar --- local correlation --- SNR --- K-L transform --- seislet transform --- generative adversarial nets --- through-wall radar imaging --- multipath ghost suppression --- generator and discriminator --- ultrahigh resolution --- spaceborne --- curved orbit --- series reversion --- singular value decomposition (SVD) --- deramping-based approach --- crosshole ground penetrating radar (GPR) --- Bayesian inversion --- Markov chain Monte Carlo (MCMC) --- forward model --- modeling error --- discrete cosine transform (DCT) --- through-wall imaging --- contrast target detection --- clutter reduction --- entropy thresholding --- low-rank approximation --- S-transformation --- ISAR --- micro-Doppler --- synchrosqueezing --- PBR (passive bistatic radar) --- clutter suppression --- non-uniform grid --- dilation morphology --- passive bistatic radar --- phased array radar --- parameter estimation --- aircraft surveillance --- GPR --- seasonal permafrost --- electromagnetic wave attribute --- relative water content --- marine radar --- wind direction retrieval --- small wind streak --- local gradient method --- adaptive reduced method --- energy spectrum method --- metamaterial absorber --- double negative --- dual-band --- FMCW radio altimeter --- methodological error --- critical height --- altitude measurement accuracy --- height pulses --- ultra-wide frequency deviation --- sparse recovery --- wideband noise interference --- dechirping --- subspace extraction --- denoising detection --- orthogonal matching pursuit --- pulse radar --- rotating target --- micro-motion feature extraction --- interrupted transmitting and receiving (ITR) --- dual-polarized radar --- DOA estimation --- atomic norm --- comprehensive SAR --- multiparametric SAR observation --- discrete scatterer model --- n/a --- Cramer-Rao lower bound

Listing 1 - 9 of 9
Sort by