Narrow your search

Library

FARO (4)

KU Leuven (4)

LUCA School of Arts (4)

Odisee (4)

Thomas More Kempen (4)

Thomas More Mechelen (4)

UCLL (4)

ULB (4)

ULiège (4)

VIVES (4)

More...

Resource type

book (6)


Language

English (6)


Year
From To Submit

2022 (3)

2020 (2)

2011 (1)

Listing 1 - 6 of 6
Sort by

Book
Modified mass-spring system for physically based deformation modeling
Author:
ISBN: 1000024308 3866447426 Year: 2011 Publisher: KIT Scientific Publishing

Loading...
Export citation

Choose an application

Bookmark

Abstract

Mass-spring systems are considered the simplest and most intuitive of all deformable models. They are computationally efficient, and can handle large deformations with ease. But they suffer several intrinsic limitations. In this book a modified mass-spring system for physically based deformation modeling that addresses the limitations and solves them elegantly is presented. Several implementations in modeling breast mechanics, heart mechanics and for elastic images registration are presented.


Book
Advanced Energy Harvesting Technologies
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Energy harvesting is the conversion of unused or wasted energy in the ambient environment into useful electrical energy. It can be used to power small electronic systems such as wireless sensors and is beginning to enable the widespread and maintenance-free deployment of Internet of Things (IoT) technology. This Special Issue is a collection of the latest developments in both fundamental research and system-level integration. This Special Issue features two review papers, covering two of the hottest research topics in the area of energy harvesting: 3D-printed energy harvesting and triboelectric nanogenerators (TENGs). These papers provide a comprehensive survey of their respective research area, highlight the advantages of the technologies and point out challenges in future development. They are must-read papers for those who are active in these areas. This Special Issue also includes ten research papers covering a wide range of energy-harvesting techniques, including electromagnetic and piezoelectric wideband vibration, wind, current-carrying conductors, thermoelectric and solar energy harvesting, etc. Not only are the foundations of these novel energy-harvesting techniques investigated, but the numerical models, power-conditioning circuitry and real-world applications of these novel energy harvesting techniques are also presented.

Keywords

Technology: general issues --- History of engineering & technology --- piezoelectric harvester --- orthoplanar spring --- trapezoidal leg --- vibration energy --- acoustic resonance --- closed side branch --- DDES --- wind energy harvester --- Autonomous Internet of Things --- vibration energy harvesting --- electromagnetic–mechanical modeling --- autonomous sensors --- self-powered device --- battery-less modules --- energy harvesting --- Wiegand sensor --- self-oscillating boost converter --- power management --- connected vehicles --- smart cities --- electric vehicle --- IoT --- Tesla --- triboelectric nanogenerators --- ocean wave --- artificial intelligence --- structural health monitoring --- TEG --- thermoelectricity --- thermal energy harvesting --- tracker --- wildlife --- animal --- ultra low power --- 3D printed --- vibration harvester --- electromagnetic --- hybrid --- photovoltaics --- solar panel --- highway --- urban street --- experimental investigation --- water --- solar still --- absorber --- silicon --- temperature --- dual resonance frequencies --- vibration electromagnetic energy harvester --- wide harvested frequency range --- enhanced “band-pass” harvested power --- independent resonant frequencies --- autonomous wireless sensor --- passive energy management --- weak vibration --- electromagnetic converter --- wideband --- planar spring --- voltage multiplier --- rectifier --- predictive maintenance --- failure detection --- WSN --- n/a --- electromagnetic-mechanical modeling --- enhanced "band-pass" harvested power


Book
Advanced Energy Harvesting Technologies
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Energy harvesting is the conversion of unused or wasted energy in the ambient environment into useful electrical energy. It can be used to power small electronic systems such as wireless sensors and is beginning to enable the widespread and maintenance-free deployment of Internet of Things (IoT) technology. This Special Issue is a collection of the latest developments in both fundamental research and system-level integration. This Special Issue features two review papers, covering two of the hottest research topics in the area of energy harvesting: 3D-printed energy harvesting and triboelectric nanogenerators (TENGs). These papers provide a comprehensive survey of their respective research area, highlight the advantages of the technologies and point out challenges in future development. They are must-read papers for those who are active in these areas. This Special Issue also includes ten research papers covering a wide range of energy-harvesting techniques, including electromagnetic and piezoelectric wideband vibration, wind, current-carrying conductors, thermoelectric and solar energy harvesting, etc. Not only are the foundations of these novel energy-harvesting techniques investigated, but the numerical models, power-conditioning circuitry and real-world applications of these novel energy harvesting techniques are also presented.

Keywords

Technology: general issues --- History of engineering & technology --- piezoelectric harvester --- orthoplanar spring --- trapezoidal leg --- vibration energy --- acoustic resonance --- closed side branch --- DDES --- wind energy harvester --- Autonomous Internet of Things --- vibration energy harvesting --- electromagnetic–mechanical modeling --- autonomous sensors --- self-powered device --- battery-less modules --- energy harvesting --- Wiegand sensor --- self-oscillating boost converter --- power management --- connected vehicles --- smart cities --- electric vehicle --- IoT --- Tesla --- triboelectric nanogenerators --- ocean wave --- artificial intelligence --- structural health monitoring --- TEG --- thermoelectricity --- thermal energy harvesting --- tracker --- wildlife --- animal --- ultra low power --- 3D printed --- vibration harvester --- electromagnetic --- hybrid --- photovoltaics --- solar panel --- highway --- urban street --- experimental investigation --- water --- solar still --- absorber --- silicon --- temperature --- dual resonance frequencies --- vibration electromagnetic energy harvester --- wide harvested frequency range --- enhanced “band-pass” harvested power --- independent resonant frequencies --- autonomous wireless sensor --- passive energy management --- weak vibration --- electromagnetic converter --- wideband --- planar spring --- voltage multiplier --- rectifier --- predictive maintenance --- failure detection --- WSN --- n/a --- electromagnetic-mechanical modeling --- enhanced "band-pass" harvested power


Book
Advanced Energy Harvesting Technologies
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Energy harvesting is the conversion of unused or wasted energy in the ambient environment into useful electrical energy. It can be used to power small electronic systems such as wireless sensors and is beginning to enable the widespread and maintenance-free deployment of Internet of Things (IoT) technology. This Special Issue is a collection of the latest developments in both fundamental research and system-level integration. This Special Issue features two review papers, covering two of the hottest research topics in the area of energy harvesting: 3D-printed energy harvesting and triboelectric nanogenerators (TENGs). These papers provide a comprehensive survey of their respective research area, highlight the advantages of the technologies and point out challenges in future development. They are must-read papers for those who are active in these areas. This Special Issue also includes ten research papers covering a wide range of energy-harvesting techniques, including electromagnetic and piezoelectric wideband vibration, wind, current-carrying conductors, thermoelectric and solar energy harvesting, etc. Not only are the foundations of these novel energy-harvesting techniques investigated, but the numerical models, power-conditioning circuitry and real-world applications of these novel energy harvesting techniques are also presented.

Keywords

piezoelectric harvester --- orthoplanar spring --- trapezoidal leg --- vibration energy --- acoustic resonance --- closed side branch --- DDES --- wind energy harvester --- Autonomous Internet of Things --- vibration energy harvesting --- electromagnetic–mechanical modeling --- autonomous sensors --- self-powered device --- battery-less modules --- energy harvesting --- Wiegand sensor --- self-oscillating boost converter --- power management --- connected vehicles --- smart cities --- electric vehicle --- IoT --- Tesla --- triboelectric nanogenerators --- ocean wave --- artificial intelligence --- structural health monitoring --- TEG --- thermoelectricity --- thermal energy harvesting --- tracker --- wildlife --- animal --- ultra low power --- 3D printed --- vibration harvester --- electromagnetic --- hybrid --- photovoltaics --- solar panel --- highway --- urban street --- experimental investigation --- water --- solar still --- absorber --- silicon --- temperature --- dual resonance frequencies --- vibration electromagnetic energy harvester --- wide harvested frequency range --- enhanced “band-pass” harvested power --- independent resonant frequencies --- autonomous wireless sensor --- passive energy management --- weak vibration --- electromagnetic converter --- wideband --- planar spring --- voltage multiplier --- rectifier --- predictive maintenance --- failure detection --- WSN --- n/a --- electromagnetic-mechanical modeling --- enhanced "band-pass" harvested power


Book
Austenitic TRIP/TWIP Steels and Steel-Zirconia Composites : Design of Tough, Transformation-Strengthened Composites and Structures
Authors: --- ---
ISBN: 3030426033 3030426025 Year: 2020 Publisher: Springer Nature

Loading...
Export citation

Choose an application

Bookmark

Abstract

This open access book presents a collection of the most up-to-date research results in the field of steel development with a focus on pioneering alloy concepts that result in previously unattainable materials properties. Specifically, it gives a detailed overview of the marriage of high-performance steels of the highest strength and form-ability with damage-tolerant zirconia ceramics by innovative manufacturing technologies, thereby yielding a new class of high-performance composite materials. This book describes how new high-alloy stainless TRIP/TWIP steels (TRIP: TRansformation-Induced Plasticity, TWIP: TWinning-induced Plasticity) are combined with zirconium dioxide ceramics in powder metallurgical routes and via melt infiltration to form novel TRIP-matrix composites. This work also provides a timely perspective on new compact and damage-tolerant composite materials, filigree light-weight structures as well as gradient materials, and a close understanding of the mechanisms of the phase transformations. With a detailed application analysis of state-of-the-art methods in spatial and temporal high-resolution structural analysis, in combination with advanced simulation and modelling, this edited volume is ideal for researchers and engineers working in modern steel development, as well as for graduate students of metallurgy and materials science and engineering.

Keywords

Structural materials. --- Metals. --- Ceramics. --- Glass. --- Composites (Materials). --- Composite materials. --- Engineering—Materials. --- Mathematical models. --- Structural Materials. --- Metallic Materials. --- Ceramics, Glass, Composites, Natural Materials. --- Materials Engineering. --- Mathematical Modeling and Industrial Mathematics. --- Models, Mathematical --- Simulation methods --- Composites (Materials) --- Multiphase materials --- Reinforced solids --- Solids, Reinforced --- Two phase materials --- Materials --- Amorphous substances --- Ceramics --- Glazing --- Ceramic technology --- Industrial ceramics --- Keramics --- Building materials --- Chemistry, Technical --- Clay --- Metallic elements --- Chemical elements --- Ores --- Metallurgy --- Architectural materials --- Architecture --- Building --- Building supplies --- Buildings --- Construction materials --- Structural materials --- Structural Materials --- Metallic Materials --- Ceramics, Glass, Composites, Natural Materials --- Materials Engineering --- Mathematical Modeling and Industrial Mathematics --- Metals and Alloys --- Steel-Matrix Composite --- Austenitic Stainless Steels --- Powder Metallurgy --- Fracture Toughness --- Mechanical Modeling --- Melt Flow Behavior --- CrMnNi Steels --- Ceramic Casting --- Melt Infiltration --- Open Access --- Materials science --- Structural engineering --- Metals technology / metallurgy --- Industrial chemistry & chemical engineering --- Mathematical modelling --- Maths for engineers


Book
Modelling and Simulation of Sheet Metal Forming Processes
Authors: ---
ISBN: 3039285572 3039285564 Year: 2020 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The numerical simulation of sheet metal forming processes has become an indispensable tool for the design of components and their forming processes. This role was attained due to the huge impact in reducing time to market and the cost of developing new components in industries ranging from automotive to packing, as well as enabling an improved understanding of the deformation mechanisms and their interaction with process parameters. Despite being a consolidated tool, its potential for application continues to be discovered with the continuous need to simulate more complex processes, including the integration of the various processes involved in the production of a sheet metal component and the analysis of in-service behavior. The quest for more robust and sustainable processes has also changed its deterministic character into stochastic to be able to consider the scatter in mechanical properties induced by previous manufacturing processes. Faced with these challenges, this Special Issue presents scientific advances in the development of numerical tools that improve the prediction results for conventional forming process, enable the development of new forming processes, or contribute to the integration of several manufacturing processes, highlighting the growing multidisciplinary characteristic of this field.

Listing 1 - 6 of 6
Sort by