Narrow your search

Library

FARO (3)

KU Leuven (3)

LUCA School of Arts (3)

Odisee (3)

Thomas More Kempen (3)

Thomas More Mechelen (3)

UCLL (3)

ULB (3)

ULiège (3)

VIVES (3)

More...

Resource type

book (7)


Language

English (7)


Year
From To Submit

2021 (3)

2020 (4)

Listing 1 - 7 of 7
Sort by

Book
Nanocellulose and Nanocarbons Based Hybrid Materials : Synthesis, Characterization and Applications
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This highly informative and carefully presented book discusses the preparation, processing, characterization and applications of different types of hybrid nanomaterials based on nanocellulose and/or nanocarbons. It gives an overview of recent advances of outstanding classes of hybrid materials applied in the fields of physics, chemistry, biology, medicine, and materials science, among others. The content of this book is relevant to researchers in academia and industry professionals working on the development of advanced hybrid nanomaterials and their applications.

Keywords

Technology: general issues --- graphene nanoplatelet --- multi-walled carbon nanotube --- hybrid film --- vacuum filtration --- strain sensing --- graphene --- multimodal-high density polyethylene --- melt extrusion --- polymer --- nanocomposite, polymer degradation --- dispersion and distribution of graphene --- nano-cellulose --- MOF --- carbon-doped CuO/Fe3O4 nanocatalyst --- catalytic reduction --- pollutant remedy --- nanocellulose --- cationic microcrystalline cellulose --- high-intensity ultrasonication --- high-pressure homogenization --- acid hydrolysis --- starch nanocomposite films --- cellulose nanofibers --- carbon nanotube --- polyaniline --- hydrogels --- supercapacitor --- cellulose nanofibrils --- graphene nanoplates --- carbon nanotubes --- aerogel --- organic dyes --- adsorption --- nanofibrillated cellulose --- cellulose nanocrystals --- fullerenes --- diamond nanoparticles --- sensors --- drug delivery --- tissue engineering --- wound dressing --- natural rubber latex --- NOCNF --- jute fibers --- nitro-oxidation --- hybrids --- applications --- immunomodulator --- synthesis --- polymerization --- characterization --- cytotoxicity --- reduced graphene oxide --- gum tragacanth --- hydrogel --- hydrogel composite --- mercury ion --- chromium ion --- reusability --- cellulose nanofiber --- chitosan nanofiber --- composite --- mechanical properties --- antioxidant activity --- graphene nanoplatelet --- multi-walled carbon nanotube --- hybrid film --- vacuum filtration --- strain sensing --- graphene --- multimodal-high density polyethylene --- melt extrusion --- polymer --- nanocomposite, polymer degradation --- dispersion and distribution of graphene --- nano-cellulose --- MOF --- carbon-doped CuO/Fe3O4 nanocatalyst --- catalytic reduction --- pollutant remedy --- nanocellulose --- cationic microcrystalline cellulose --- high-intensity ultrasonication --- high-pressure homogenization --- acid hydrolysis --- starch nanocomposite films --- cellulose nanofibers --- carbon nanotube --- polyaniline --- hydrogels --- supercapacitor --- cellulose nanofibrils --- graphene nanoplates --- carbon nanotubes --- aerogel --- organic dyes --- adsorption --- nanofibrillated cellulose --- cellulose nanocrystals --- fullerenes --- diamond nanoparticles --- sensors --- drug delivery --- tissue engineering --- wound dressing --- natural rubber latex --- NOCNF --- jute fibers --- nitro-oxidation --- hybrids --- applications --- immunomodulator --- synthesis --- polymerization --- characterization --- cytotoxicity --- reduced graphene oxide --- gum tragacanth --- hydrogel --- hydrogel composite --- mercury ion --- chromium ion --- reusability --- cellulose nanofiber --- chitosan nanofiber --- composite --- mechanical properties --- antioxidant activity


Book
Environmentally Friendly Polymeric Blends from Renewable Sources
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Materials from renewable resources have attracted increasing attention in recent decades as a result of environmental concerns and due to the depletion of petroleum resources. Polymeric materials from renewable sources have a long history. They were used in ancient times and later accompanied the development of man and civilization. Currently, they are widespread in many areas of life and used, for example, in packaging and in the automotive, construction and pharmaceutical industries.The aim of this Special Issue is to highlight the progress in the manufacturing, characterization, and applications of environmentally friendly polymeric blends from renewable resources. The following aspects were investigated: (i) synthesis of composites based on natural llers; (ii) chemical modi cation of polymers or fillers in order to improve interfacial interactions; (iii) potential applications of the biobased materials.

Keywords

Environmental science, engineering & technology --- lignin --- microspheres --- composites --- polymeric material --- fractionation --- porosity --- radiation grafting --- cotton linter --- phosphate adsorption --- dynamic studies --- bio-polyethylene --- barley straw --- thermomechanical fibers --- interface --- automotive industry --- natural fiber --- polypropylene --- stiffness --- curauá fibers --- microcrystalline cellulose (MCC) --- unsaturated polyester resins --- thermogravimetric analysis (TG) --- mechanical analysis --- dynamic mechanical analysis (DMA) --- LignoBoost® kraft lignin --- potentiometric sensors --- carbon nanotubes --- impedance spectroscopy --- transition metals --- rice nanofibers --- biocomposites --- casting --- mechanical properties --- thermal properties --- rigid polyurethane foams --- lignocellulosic materials --- filler --- chemical treatment --- mechanical characteristics --- pyrolysis process --- Caragana korshinskii biochar --- physicochemical properties --- adsorption characteristics --- nitrate nitrogen --- bio-oil --- polyurethanes --- hemp shives --- bio-filler --- oil impregnation --- sugar beet pulp --- thermal conductivity --- polyurethane composites --- lavender --- kaolinite --- hydroxyapatite --- high-ball milling process --- antibacterial activity --- wood-resin composites --- unsaturated polyester resin --- recycled PET --- wood flour --- renewable resources --- silver nanoparticles --- lignin --- microspheres --- composites --- polymeric material --- fractionation --- porosity --- radiation grafting --- cotton linter --- phosphate adsorption --- dynamic studies --- bio-polyethylene --- barley straw --- thermomechanical fibers --- interface --- automotive industry --- natural fiber --- polypropylene --- stiffness --- curauá fibers --- microcrystalline cellulose (MCC) --- unsaturated polyester resins --- thermogravimetric analysis (TG) --- mechanical analysis --- dynamic mechanical analysis (DMA) --- LignoBoost® kraft lignin --- potentiometric sensors --- carbon nanotubes --- impedance spectroscopy --- transition metals --- rice nanofibers --- biocomposites --- casting --- mechanical properties --- thermal properties --- rigid polyurethane foams --- lignocellulosic materials --- filler --- chemical treatment --- mechanical characteristics --- pyrolysis process --- Caragana korshinskii biochar --- physicochemical properties --- adsorption characteristics --- nitrate nitrogen --- bio-oil --- polyurethanes --- hemp shives --- bio-filler --- oil impregnation --- sugar beet pulp --- thermal conductivity --- polyurethane composites --- lavender --- kaolinite --- hydroxyapatite --- high-ball milling process --- antibacterial activity --- wood-resin composites --- unsaturated polyester resin --- recycled PET --- wood flour --- renewable resources --- silver nanoparticles


Book
Element-Doped Functional Carbon-based Materials
Authors: --- ---
ISBN: 3039282255 3039282247 Year: 2020 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Carbon materials are one of the most fascinating materials because of their unique properties and potential use in several applications. They can be obtained from residues or by using advanced synthesis technologies like chemical vapor deposition. The carbon family is very broad, ranging from classical activated carbons to more advanced species such as carbon nanotubes and graphene. The surface chemistry is one of the most interesting aspects of this broad family of materials, which allows the incorporation of different types of chemical functionalities or heteroatoms on the carbon surface, such as O, N, B, S, or P, which can modify the acid–base character, hydrophobicity/hydrophilicity, or the electronic properties of these materials and, thus, determine the final application. This book represents a collection of original research articles and communications focused on the synthesis, properties, and applications of heteroatom-doped functional carbon materials.


Book
Environmentally Friendly Polymeric Blends from Renewable Sources
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Materials from renewable resources have attracted increasing attention in recent decades as a result of environmental concerns and due to the depletion of petroleum resources. Polymeric materials from renewable sources have a long history. They were used in ancient times and later accompanied the development of man and civilization. Currently, they are widespread in many areas of life and used, for example, in packaging and in the automotive, construction and pharmaceutical industries.The aim of this Special Issue is to highlight the progress in the manufacturing, characterization, and applications of environmentally friendly polymeric blends from renewable resources. The following aspects were investigated: (i) synthesis of composites based on natural llers; (ii) chemical modi cation of polymers or fillers in order to improve interfacial interactions; (iii) potential applications of the biobased materials.

Keywords

Environmental science, engineering & technology --- lignin --- microspheres --- composites --- polymeric material --- fractionation --- porosity --- radiation grafting --- cotton linter --- phosphate adsorption --- dynamic studies --- bio-polyethylene --- barley straw --- thermomechanical fibers --- interface --- automotive industry --- natural fiber --- polypropylene --- stiffness --- curauá fibers --- microcrystalline cellulose (MCC) --- unsaturated polyester resins --- thermogravimetric analysis (TG) --- mechanical analysis --- dynamic mechanical analysis (DMA) --- LignoBoost® kraft lignin --- potentiometric sensors --- carbon nanotubes --- impedance spectroscopy --- transition metals --- rice nanofibers --- biocomposites --- casting --- mechanical properties --- thermal properties --- rigid polyurethane foams --- lignocellulosic materials --- filler --- chemical treatment --- mechanical characteristics --- pyrolysis process --- Caragana korshinskii biochar --- physicochemical properties --- adsorption characteristics --- nitrate nitrogen --- bio-oil --- polyurethanes --- hemp shives --- bio-filler --- oil impregnation --- sugar beet pulp --- thermal conductivity --- polyurethane composites --- lavender --- kaolinite --- hydroxyapatite --- high-ball milling process --- antibacterial activity --- wood–resin composites --- unsaturated polyester resin --- recycled PET --- wood flour --- renewable resources --- silver nanoparticles --- n/a --- curauá fibers --- wood-resin composites


Book
Nanocellulose and Nanocarbons Based Hybrid Materials : Synthesis, Characterization and Applications
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This highly informative and carefully presented book discusses the preparation, processing, characterization and applications of different types of hybrid nanomaterials based on nanocellulose and/or nanocarbons. It gives an overview of recent advances of outstanding classes of hybrid materials applied in the fields of physics, chemistry, biology, medicine, and materials science, among others. The content of this book is relevant to researchers in academia and industry professionals working on the development of advanced hybrid nanomaterials and their applications.


Book
Nanocellulose and Nanocarbons Based Hybrid Materials : Synthesis, Characterization and Applications
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This highly informative and carefully presented book discusses the preparation, processing, characterization and applications of different types of hybrid nanomaterials based on nanocellulose and/or nanocarbons. It gives an overview of recent advances of outstanding classes of hybrid materials applied in the fields of physics, chemistry, biology, medicine, and materials science, among others. The content of this book is relevant to researchers in academia and industry professionals working on the development of advanced hybrid nanomaterials and their applications.


Book
Environmentally Friendly Polymeric Blends from Renewable Sources
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Materials from renewable resources have attracted increasing attention in recent decades as a result of environmental concerns and due to the depletion of petroleum resources. Polymeric materials from renewable sources have a long history. They were used in ancient times and later accompanied the development of man and civilization. Currently, they are widespread in many areas of life and used, for example, in packaging and in the automotive, construction and pharmaceutical industries.The aim of this Special Issue is to highlight the progress in the manufacturing, characterization, and applications of environmentally friendly polymeric blends from renewable resources. The following aspects were investigated: (i) synthesis of composites based on natural llers; (ii) chemical modi cation of polymers or fillers in order to improve interfacial interactions; (iii) potential applications of the biobased materials.

Listing 1 - 7 of 7
Sort by