Narrow your search

Library

FARO (3)

KU Leuven (3)

LUCA School of Arts (3)

Odisee (3)

Thomas More Kempen (3)

Thomas More Mechelen (3)

UCLL (3)

ULB (3)

ULiège (3)

VIVES (3)

More...

Resource type

book (9)


Language

English (9)


Year
From To Submit

2022 (3)

2020 (6)

Listing 1 - 9 of 9
Sort by

Book
Unraveling the Mechanisms of Zn Efficiency in Crop Plants: From Lab to Field Applications
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Many agricultural crops worldwide suffer from zinc (Zn) deficiency. Despite widespread interest in Zn, plant professionals often lack current information on this indispensable essential mineral nutrient. G. Hacisalihoglu, PhD, in Unraveling the Mechanisms of Zinc Efficiency in Crop Plants, and a host of recognized experts address this gap with the up-to-date importance of Zn nutrition. This book examines research aimed at understanding how plants uptake and utilize Zn. It has been peer-reviewed and multi-authored by expert plant biology scientists with related expertise. The editor provides a comprehensive overview of zinc (Zn) nutrition in plants, seeds, roots, and soil, which renders this book a good reference for plant biology professionals. Agricultural sustainability in the time of the growing world population will be one of the major challenges in the next 30 plus years. Zn is one of the most important essential mineral nutrients required for metabolic processes, so a shortage of Zn constrains crop yield and quality worldwide. Zinc efficiency and higher growth and yield under low Zn supply make it a promising sustainable solution for developing cultivars that are zinc efficient. Several articles are included in this book that provide an overview of current developments and trends in the times of high-throughput genomics and phenomics data analysis. Furthermore, this book presents research findings in various experimental models and areas ranging from maize to alfalfa, flax, and sorghum.Unraveling the Mechanisms of Zinc Efficiency in Crop Plants is a must read for researchers and plant biology professionals.


Book
Unraveling the Mechanisms of Zn Efficiency in Crop Plants: From Lab to Field Applications
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Many agricultural crops worldwide suffer from zinc (Zn) deficiency. Despite widespread interest in Zn, plant professionals often lack current information on this indispensable essential mineral nutrient. G. Hacisalihoglu, PhD, in Unraveling the Mechanisms of Zinc Efficiency in Crop Plants, and a host of recognized experts address this gap with the up-to-date importance of Zn nutrition. This book examines research aimed at understanding how plants uptake and utilize Zn. It has been peer-reviewed and multi-authored by expert plant biology scientists with related expertise. The editor provides a comprehensive overview of zinc (Zn) nutrition in plants, seeds, roots, and soil, which renders this book a good reference for plant biology professionals. Agricultural sustainability in the time of the growing world population will be one of the major challenges in the next 30 plus years. Zn is one of the most important essential mineral nutrients required for metabolic processes, so a shortage of Zn constrains crop yield and quality worldwide. Zinc efficiency and higher growth and yield under low Zn supply make it a promising sustainable solution for developing cultivars that are zinc efficient. Several articles are included in this book that provide an overview of current developments and trends in the times of high-throughput genomics and phenomics data analysis. Furthermore, this book presents research findings in various experimental models and areas ranging from maize to alfalfa, flax, and sorghum.Unraveling the Mechanisms of Zinc Efficiency in Crop Plants is a must read for researchers and plant biology professionals.


Book
Plant Responses and Tolerance to Metal/Metalloid Toxicity
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue provides 15 research articles and 4 comprehensive review articles on various aspects of plant–metal/metalloid interactions. - Up-to-date information on plant responses to metals/metalloids are published. - Various mechanisms of plant tolerance to metals’/metalloids’ toxicity are presented. - Exogenous applications of mitigating metals’/metalloids’ toxicity are discussed. - Sustainable technologies in growing plants in metal/metalloid-contaminated environments are discussed. - Phytoremediation techniques for the remediation of metals/metalloids are discussed.

Keywords

Research & information: general --- Biology, life sciences --- Botany & plant sciences --- metal stress --- toxicity --- silicon --- Si-fertilization --- genomics --- transporter genes --- cadmium toxicity --- oxidative stress --- antioxidative defense system --- photosynthetic pigments --- environmental pollution --- phytoextraction --- cadmium --- biostimulation --- oxidative damage --- metal toxicity --- sulphur nutrition --- stress mitigation --- cation exchange capacity --- glutathione --- agriculture --- Cd stress --- environmental --- gene expression --- PGPB --- switchgrass --- P. fasciculatum --- heavy metals --- tolerant plant --- protein carbonylation --- photosynthesis proteins --- mining soils --- thiols --- phenolic metabolites --- organic acids --- lead --- castor beans --- citric acid --- antioxidant enzyme --- antioxidant system --- ethylene --- glyoxalase system --- photosynthesis --- proline metabolism --- zinc --- jute varieties --- copper stress --- phytoremediation --- bioaccumulation factor --- translocation factor --- growth --- copper toxicity --- micronutrient deficiency --- iron --- nicotianamine --- histidine --- Cu-chelation --- lead pollution --- antioxidants --- bentonite --- grain biochemistry --- biochar --- maize hybrids --- nickel --- nutrients --- translocation --- heavy metal --- reactive oxygen species --- oxidative burst --- Rhododendron arboreum --- Vigna radiata --- enzymes activity --- chromium (Cr) --- polyphenols --- abiotic stress --- antioxidant defense --- methylglyoxal --- organic acid --- ripening physiology --- silver --- chemical elicitors --- chili --- fibrous crop --- environmental pollutants --- morphological traits --- soil remediation --- chelating agents --- chromium --- wastewater --- sunflower --- biomass --- chlorophyll contents


Book
Plant Responses and Tolerance to Metal/Metalloid Toxicity
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue provides 15 research articles and 4 comprehensive review articles on various aspects of plant–metal/metalloid interactions. - Up-to-date information on plant responses to metals/metalloids are published. - Various mechanisms of plant tolerance to metals’/metalloids’ toxicity are presented. - Exogenous applications of mitigating metals’/metalloids’ toxicity are discussed. - Sustainable technologies in growing plants in metal/metalloid-contaminated environments are discussed. - Phytoremediation techniques for the remediation of metals/metalloids are discussed.

Keywords

Research & information: general --- Biology, life sciences --- Botany & plant sciences --- metal stress --- toxicity --- silicon --- Si-fertilization --- genomics --- transporter genes --- cadmium toxicity --- oxidative stress --- antioxidative defense system --- photosynthetic pigments --- environmental pollution --- phytoextraction --- cadmium --- biostimulation --- oxidative damage --- metal toxicity --- sulphur nutrition --- stress mitigation --- cation exchange capacity --- glutathione --- agriculture --- Cd stress --- environmental --- gene expression --- PGPB --- switchgrass --- P. fasciculatum --- heavy metals --- tolerant plant --- protein carbonylation --- photosynthesis proteins --- mining soils --- thiols --- phenolic metabolites --- organic acids --- lead --- castor beans --- citric acid --- antioxidant enzyme --- antioxidant system --- ethylene --- glyoxalase system --- photosynthesis --- proline metabolism --- zinc --- jute varieties --- copper stress --- phytoremediation --- bioaccumulation factor --- translocation factor --- growth --- copper toxicity --- micronutrient deficiency --- iron --- nicotianamine --- histidine --- Cu-chelation --- lead pollution --- antioxidants --- bentonite --- grain biochemistry --- biochar --- maize hybrids --- nickel --- nutrients --- translocation --- heavy metal --- reactive oxygen species --- oxidative burst --- Rhododendron arboreum --- Vigna radiata --- enzymes activity --- chromium (Cr) --- polyphenols --- abiotic stress --- antioxidant defense --- methylglyoxal --- organic acid --- ripening physiology --- silver --- chemical elicitors --- chili --- fibrous crop --- environmental pollutants --- morphological traits --- soil remediation --- chelating agents --- chromium --- wastewater --- sunflower --- biomass --- chlorophyll contents


Book
Unraveling the Mechanisms of Zn Efficiency in Crop Plants: From Lab to Field Applications
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Many agricultural crops worldwide suffer from zinc (Zn) deficiency. Despite widespread interest in Zn, plant professionals often lack current information on this indispensable essential mineral nutrient. G. Hacisalihoglu, PhD, in Unraveling the Mechanisms of Zinc Efficiency in Crop Plants, and a host of recognized experts address this gap with the up-to-date importance of Zn nutrition. This book examines research aimed at understanding how plants uptake and utilize Zn. It has been peer-reviewed and multi-authored by expert plant biology scientists with related expertise. The editor provides a comprehensive overview of zinc (Zn) nutrition in plants, seeds, roots, and soil, which renders this book a good reference for plant biology professionals. Agricultural sustainability in the time of the growing world population will be one of the major challenges in the next 30 plus years. Zn is one of the most important essential mineral nutrients required for metabolic processes, so a shortage of Zn constrains crop yield and quality worldwide. Zinc efficiency and higher growth and yield under low Zn supply make it a promising sustainable solution for developing cultivars that are zinc efficient. Several articles are included in this book that provide an overview of current developments and trends in the times of high-throughput genomics and phenomics data analysis. Furthermore, this book presents research findings in various experimental models and areas ranging from maize to alfalfa, flax, and sorghum.Unraveling the Mechanisms of Zinc Efficiency in Crop Plants is a must read for researchers and plant biology professionals.


Book
Plant Responses and Tolerance to Metal/Metalloid Toxicity
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue provides 15 research articles and 4 comprehensive review articles on various aspects of plant–metal/metalloid interactions. - Up-to-date information on plant responses to metals/metalloids are published. - Various mechanisms of plant tolerance to metals’/metalloids’ toxicity are presented. - Exogenous applications of mitigating metals’/metalloids’ toxicity are discussed. - Sustainable technologies in growing plants in metal/metalloid-contaminated environments are discussed. - Phytoremediation techniques for the remediation of metals/metalloids are discussed.

Keywords

metal stress --- toxicity --- silicon --- Si-fertilization --- genomics --- transporter genes --- cadmium toxicity --- oxidative stress --- antioxidative defense system --- photosynthetic pigments --- environmental pollution --- phytoextraction --- cadmium --- biostimulation --- oxidative damage --- metal toxicity --- sulphur nutrition --- stress mitigation --- cation exchange capacity --- glutathione --- agriculture --- Cd stress --- environmental --- gene expression --- PGPB --- switchgrass --- P. fasciculatum --- heavy metals --- tolerant plant --- protein carbonylation --- photosynthesis proteins --- mining soils --- thiols --- phenolic metabolites --- organic acids --- lead --- castor beans --- citric acid --- antioxidant enzyme --- antioxidant system --- ethylene --- glyoxalase system --- photosynthesis --- proline metabolism --- zinc --- jute varieties --- copper stress --- phytoremediation --- bioaccumulation factor --- translocation factor --- growth --- copper toxicity --- micronutrient deficiency --- iron --- nicotianamine --- histidine --- Cu-chelation --- lead pollution --- antioxidants --- bentonite --- grain biochemistry --- biochar --- maize hybrids --- nickel --- nutrients --- translocation --- heavy metal --- reactive oxygen species --- oxidative burst --- Rhododendron arboreum --- Vigna radiata --- enzymes activity --- chromium (Cr) --- polyphenols --- abiotic stress --- antioxidant defense --- methylglyoxal --- organic acid --- ripening physiology --- silver --- chemical elicitors --- chili --- fibrous crop --- environmental pollutants --- morphological traits --- soil remediation --- chelating agents --- chromium --- wastewater --- sunflower --- biomass --- chlorophyll contents


Book
Heavy Metals Accumulation, Toxicity and Detoxification in Plants
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

In recent years, heavy metals have been widely used in agricultural, chemical, domestic, and technological applications, causing environmental and soil contaminations. Heavy metals enter the plant system through soil or via the atmosphere, and can accumulate, affecting physiological processes, plant growth, yield, and human health if heavy metals are stored in edible tissues. Understanding the regulation mechanisms of plant heavy metals accumulation and partitioning is important to improve the safety of the food chain. In this Special Issue book, a total of 19 articles were included; four reviews covering phytoremediation, manganese phytotoxicity in plants, the effect of cadmium on plant development, the genetic characteristics of Cd accumulation, and the research status of genes and QTLs in rice, respectively, as well as fifteen original research articles, mainly regarding the impact of cadmium on plants. Cadmium was therefore the predominant topic of this Special Issue, increasing the attention of the research community on the negative impacts determined by cadmium or cadmium associated with other heavy metals. The articles have highlighted a great genetic variability, suggesting different possibilities for accumulation, translocation and the reduction or control of heavy metal toxicity in plants.

Keywords

Technology: general issues --- cotton (Gossypium hirsutum L.) --- transcriptome --- Cd stress --- GhHMAD5 --- overexpression --- VIGS (virus induced gene silence) --- cadmium --- glycinebetaine --- photosynthesis --- ultrastructure --- tobacco (Nicotiana tabacum L.) --- Cadmium --- hyperaccumulator --- Viola baoshanensis --- detoxification --- Cd --- PtoABCG36 --- tolerance --- poplar --- accumulation --- efflux --- phytoremediation --- heavy metals --- hyperaccumulation --- plant genotype improvement --- soil management --- cadmium accumulation --- absorption and transport --- QTL location --- mapping population --- rice (Oryza sativa L.) --- selenium --- cadmium stress --- auxin --- root architecture --- phosphate transporter --- Nicotiana tabacum --- oxidative stress --- cell cycle --- cell wall --- germination --- reproduction --- plant growth and development --- antioxidative system --- Brassicaceae family --- mitogen-activated protein kinases --- Ulva compressa --- antioxidant --- metal chelator --- in vivo chlorophyll a florescence --- physiology --- mitogen activated protein kinases --- metal accumulation --- DNA methylation --- ABCC transporters --- HMA2 --- wheat --- metal stress tolerance --- manganese toxicity --- Mn detoxification --- tolerance mechanism --- gene function --- subcellular compartment --- lead --- nicotianamine --- mugineic acid --- heavy metal --- toxic metal --- durum wheat --- Arabidopsis --- small heat shock protein --- OsMSR3 --- copper stress --- reactive oxygen species --- copper and zinc --- expression in bacteria --- metallothioneins --- marine alga --- Brassica campestris L. --- glutathione synthetase --- glutathione S-transferase --- alternative splicing --- Italian ryegrass root --- LmAUX1 --- hormesis --- growth --- chlorophyll a fluorescence --- n/a


Book
Heavy Metals Accumulation, Toxicity and Detoxification in Plants
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

In recent years, heavy metals have been widely used in agricultural, chemical, domestic, and technological applications, causing environmental and soil contaminations. Heavy metals enter the plant system through soil or via the atmosphere, and can accumulate, affecting physiological processes, plant growth, yield, and human health if heavy metals are stored in edible tissues. Understanding the regulation mechanisms of plant heavy metals accumulation and partitioning is important to improve the safety of the food chain. In this Special Issue book, a total of 19 articles were included; four reviews covering phytoremediation, manganese phytotoxicity in plants, the effect of cadmium on plant development, the genetic characteristics of Cd accumulation, and the research status of genes and QTLs in rice, respectively, as well as fifteen original research articles, mainly regarding the impact of cadmium on plants. Cadmium was therefore the predominant topic of this Special Issue, increasing the attention of the research community on the negative impacts determined by cadmium or cadmium associated with other heavy metals. The articles have highlighted a great genetic variability, suggesting different possibilities for accumulation, translocation and the reduction or control of heavy metal toxicity in plants.

Keywords

Technology: general issues --- cotton (Gossypium hirsutum L.) --- transcriptome --- Cd stress --- GhHMAD5 --- overexpression --- VIGS (virus induced gene silence) --- cadmium --- glycinebetaine --- photosynthesis --- ultrastructure --- tobacco (Nicotiana tabacum L.) --- Cadmium --- hyperaccumulator --- Viola baoshanensis --- detoxification --- Cd --- PtoABCG36 --- tolerance --- poplar --- accumulation --- efflux --- phytoremediation --- heavy metals --- hyperaccumulation --- plant genotype improvement --- soil management --- cadmium accumulation --- absorption and transport --- QTL location --- mapping population --- rice (Oryza sativa L.) --- selenium --- cadmium stress --- auxin --- root architecture --- phosphate transporter --- Nicotiana tabacum --- oxidative stress --- cell cycle --- cell wall --- germination --- reproduction --- plant growth and development --- antioxidative system --- Brassicaceae family --- mitogen-activated protein kinases --- Ulva compressa --- antioxidant --- metal chelator --- in vivo chlorophyll a florescence --- physiology --- mitogen activated protein kinases --- metal accumulation --- DNA methylation --- ABCC transporters --- HMA2 --- wheat --- metal stress tolerance --- manganese toxicity --- Mn detoxification --- tolerance mechanism --- gene function --- subcellular compartment --- lead --- nicotianamine --- mugineic acid --- heavy metal --- toxic metal --- durum wheat --- Arabidopsis --- small heat shock protein --- OsMSR3 --- copper stress --- reactive oxygen species --- copper and zinc --- expression in bacteria --- metallothioneins --- marine alga --- Brassica campestris L. --- glutathione synthetase --- glutathione S-transferase --- alternative splicing --- Italian ryegrass root --- LmAUX1 --- hormesis --- growth --- chlorophyll a fluorescence --- n/a


Book
Heavy Metals Accumulation, Toxicity and Detoxification in Plants
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

In recent years, heavy metals have been widely used in agricultural, chemical, domestic, and technological applications, causing environmental and soil contaminations. Heavy metals enter the plant system through soil or via the atmosphere, and can accumulate, affecting physiological processes, plant growth, yield, and human health if heavy metals are stored in edible tissues. Understanding the regulation mechanisms of plant heavy metals accumulation and partitioning is important to improve the safety of the food chain. In this Special Issue book, a total of 19 articles were included; four reviews covering phytoremediation, manganese phytotoxicity in plants, the effect of cadmium on plant development, the genetic characteristics of Cd accumulation, and the research status of genes and QTLs in rice, respectively, as well as fifteen original research articles, mainly regarding the impact of cadmium on plants. Cadmium was therefore the predominant topic of this Special Issue, increasing the attention of the research community on the negative impacts determined by cadmium or cadmium associated with other heavy metals. The articles have highlighted a great genetic variability, suggesting different possibilities for accumulation, translocation and the reduction or control of heavy metal toxicity in plants.

Keywords

cotton (Gossypium hirsutum L.) --- transcriptome --- Cd stress --- GhHMAD5 --- overexpression --- VIGS (virus induced gene silence) --- cadmium --- glycinebetaine --- photosynthesis --- ultrastructure --- tobacco (Nicotiana tabacum L.) --- Cadmium --- hyperaccumulator --- Viola baoshanensis --- detoxification --- Cd --- PtoABCG36 --- tolerance --- poplar --- accumulation --- efflux --- phytoremediation --- heavy metals --- hyperaccumulation --- plant genotype improvement --- soil management --- cadmium accumulation --- absorption and transport --- QTL location --- mapping population --- rice (Oryza sativa L.) --- selenium --- cadmium stress --- auxin --- root architecture --- phosphate transporter --- Nicotiana tabacum --- oxidative stress --- cell cycle --- cell wall --- germination --- reproduction --- plant growth and development --- antioxidative system --- Brassicaceae family --- mitogen-activated protein kinases --- Ulva compressa --- antioxidant --- metal chelator --- in vivo chlorophyll a florescence --- physiology --- mitogen activated protein kinases --- metal accumulation --- DNA methylation --- ABCC transporters --- HMA2 --- wheat --- metal stress tolerance --- manganese toxicity --- Mn detoxification --- tolerance mechanism --- gene function --- subcellular compartment --- lead --- nicotianamine --- mugineic acid --- heavy metal --- toxic metal --- durum wheat --- Arabidopsis --- small heat shock protein --- OsMSR3 --- copper stress --- reactive oxygen species --- copper and zinc --- expression in bacteria --- metallothioneins --- marine alga --- Brassica campestris L. --- glutathione synthetase --- glutathione S-transferase --- alternative splicing --- Italian ryegrass root --- LmAUX1 --- hormesis --- growth --- chlorophyll a fluorescence --- n/a

Listing 1 - 9 of 9
Sort by