Narrow your search

Library

FARO (1)

KU Leuven (1)

LUCA School of Arts (1)

Odisee (1)

Thomas More Kempen (1)

Thomas More Mechelen (1)

UCLL (1)

ULB (1)

ULiège (1)

VIVES (1)

More...

Resource type

book (3)


Language

English (3)


Year
From To Submit

2022 (3)

Listing 1 - 3 of 3
Sort by

Book
MicroRNA and Cancer
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

MicroRNAs (miRs) are small noncoding RNAs that function as post-transcriptional regulators of gene expression and have important roles in almost all biological pathways. Deregulated miR expression has been detected in numerous cancers, where miRs act as both oncogene and tumor suppressors. Due to their important roles in tumorigenesis, miRs have been investigated as prognostic and diagnostic biomarkers and as useful targets for therapeutic intervention. From a therapeutic point of view, two modalities can serve to rectify gene networks in cancer cells. For oncomiRs, a rational means is downregulation through antagomirs. Moreover, observations of the pathological reductions in tumor-suppressive miRs have inspired the concept of “miR replacement therapy” to enhance the amount of these miRs, thereby restoring them to normal levels. However, the clinical applicability of miR-based therapies is severely limited by the lack of effective delivery systems. Therefore, to understand the role of this new class of regulators, we need to identify the mRNA targets regulated by individual miRs as well as to develop specific, efficient, and safe delivery systems for therapeutic miRs.

Keywords

Research & information: general --- Biology, life sciences --- Breast cancer --- Hypoxia inducible factor 1-alpha (HIF-1α) --- MicroRNA (miRNA) --- miR526b --- miR655 --- Oxidative stress --- Migration --- Cyclooxygenase-2 (COX-2) --- Prostaglandin E2 receptor 4 (EP4) --- PI3K/Akt --- adipokines --- endometrial cancer --- estrogens --- hyperinsulinemia --- insulin --- insulin resistance --- insulin signaling --- insulin-like growth factors --- microRNA --- miRNA --- ovarian cancer --- survival --- prognostic factor --- serum LDH --- blood biomarker --- circulating microRNA --- plasma --- immunotherapy --- immune checkpoint inhibitors --- metastatic melanoma --- hepatocellular carcinoma --- metastasis --- exosome --- bioinformatics analysis --- renal cancer --- RCC --- ccRCC --- meta-analysis --- miRNAs --- normal B-cell development --- B-CLL --- miRNA-transcription factor network --- regulation --- biomarker --- therapy --- prognosis --- diagnosis --- progression --- prediction --- smoking --- non-small cell lung cancer --- methylation --- miR-584-5p --- YKT6 --- snoRNA --- 2′-O-methylation --- pseudouridylation --- malignant melanoma --- cancer stem cell --- stemness --- head and neck squamous cell carcinoma --- colon cancer --- cancer stem cells --- microRNAs --- deformability --- PARP --- replication stress --- targeted therapy --- breast cancer --- circulating biomarkers --- medulloblastoma --- brain tumour --- subgroups --- stem cells --- n/a --- 2'-O-methylation


Book
MicroRNA and Cancer
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

MicroRNAs (miRs) are small noncoding RNAs that function as post-transcriptional regulators of gene expression and have important roles in almost all biological pathways. Deregulated miR expression has been detected in numerous cancers, where miRs act as both oncogene and tumor suppressors. Due to their important roles in tumorigenesis, miRs have been investigated as prognostic and diagnostic biomarkers and as useful targets for therapeutic intervention. From a therapeutic point of view, two modalities can serve to rectify gene networks in cancer cells. For oncomiRs, a rational means is downregulation through antagomirs. Moreover, observations of the pathological reductions in tumor-suppressive miRs have inspired the concept of “miR replacement therapy” to enhance the amount of these miRs, thereby restoring them to normal levels. However, the clinical applicability of miR-based therapies is severely limited by the lack of effective delivery systems. Therefore, to understand the role of this new class of regulators, we need to identify the mRNA targets regulated by individual miRs as well as to develop specific, efficient, and safe delivery systems for therapeutic miRs.

Keywords

Research & information: general --- Biology, life sciences --- Breast cancer --- Hypoxia inducible factor 1-alpha (HIF-1α) --- MicroRNA (miRNA) --- miR526b --- miR655 --- Oxidative stress --- Migration --- Cyclooxygenase-2 (COX-2) --- Prostaglandin E2 receptor 4 (EP4) --- PI3K/Akt --- adipokines --- endometrial cancer --- estrogens --- hyperinsulinemia --- insulin --- insulin resistance --- insulin signaling --- insulin-like growth factors --- microRNA --- miRNA --- ovarian cancer --- survival --- prognostic factor --- serum LDH --- blood biomarker --- circulating microRNA --- plasma --- immunotherapy --- immune checkpoint inhibitors --- metastatic melanoma --- hepatocellular carcinoma --- metastasis --- exosome --- bioinformatics analysis --- renal cancer --- RCC --- ccRCC --- meta-analysis --- miRNAs --- normal B-cell development --- B-CLL --- miRNA-transcription factor network --- regulation --- biomarker --- therapy --- prognosis --- diagnosis --- progression --- prediction --- smoking --- non-small cell lung cancer --- methylation --- miR-584-5p --- YKT6 --- snoRNA --- 2′-O-methylation --- pseudouridylation --- malignant melanoma --- cancer stem cell --- stemness --- head and neck squamous cell carcinoma --- colon cancer --- cancer stem cells --- microRNAs --- deformability --- PARP --- replication stress --- targeted therapy --- breast cancer --- circulating biomarkers --- medulloblastoma --- brain tumour --- subgroups --- stem cells --- n/a --- 2'-O-methylation


Book
MicroRNA and Cancer
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

MicroRNAs (miRs) are small noncoding RNAs that function as post-transcriptional regulators of gene expression and have important roles in almost all biological pathways. Deregulated miR expression has been detected in numerous cancers, where miRs act as both oncogene and tumor suppressors. Due to their important roles in tumorigenesis, miRs have been investigated as prognostic and diagnostic biomarkers and as useful targets for therapeutic intervention. From a therapeutic point of view, two modalities can serve to rectify gene networks in cancer cells. For oncomiRs, a rational means is downregulation through antagomirs. Moreover, observations of the pathological reductions in tumor-suppressive miRs have inspired the concept of “miR replacement therapy” to enhance the amount of these miRs, thereby restoring them to normal levels. However, the clinical applicability of miR-based therapies is severely limited by the lack of effective delivery systems. Therefore, to understand the role of this new class of regulators, we need to identify the mRNA targets regulated by individual miRs as well as to develop specific, efficient, and safe delivery systems for therapeutic miRs.

Listing 1 - 3 of 3
Sort by