Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULB (2)

ULiège (2)

VIVES (2)

More...

Resource type

book (6)


Language

English (6)


Year
From To Submit

2021 (6)

Listing 1 - 6 of 6
Sort by

Book
Remote Sensing of Precipitation: Part II
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Precipitation is a well-recognized pillar in the global water and energy balances. The accurate and timely understanding of its characteristics at the global, regional and local scales is indispensable for a clearer insight on the mechanisms underlying the Earth’s atmosphere-ocean complex system. Precipitation is one of the elements that is documented to be greatly affected by climate change. In its various forms, precipitation comprises the primary source of freshwater, which is vital for the sustainability of almost all human activities. Its socio-economic significance is fundamental in managing this natural resource effectively, in applications ranging from irrigation to industrial and household usage. Remote sensing of precipitation is pursued through a broad spectrum of continuously enriched and upgraded instrumentation, embracing sensors which can be ground-based (e.g., weather radars), satellite-borne (e.g., passive or active space-borne sensors), underwater (e.g., hydrophones), aerial, or ship-borne. This volume hosts original research contributions on several aspects of remote sensing of precipitation, including applications which embrace the use of remote sensing in tackling issues such as precipitation estimation, seasonal characteristics of precipitation and frequency analysis, assessment of satellite precipitation products, storm prediction, rain microphysics and microstructure, and the comparison of satellite and numerical weather prediction precipitation products.

Keywords

Research & information: general --- Northern China --- raindrop size distribution (DSD) --- microphysical processes --- quantitative precipitation estimation (QPE) --- satellite-based precipitation --- elevation --- extreme events --- IMERG-V05B and V06A --- MSWEP --- ERA5 --- SM2RAIN --- precipitation estimation --- soil moisture --- SM2RAIN-CCI --- SM2RAIN-ASCAT --- multi-satellite precipitation analysis (TMPA) --- error decomposition --- complex topography --- diverse climate --- gauge data --- IMERG --- TAHMO --- morphing --- field displacement --- TIGGE --- precipitation --- numerical weather prediction --- satellite --- flood --- spring 2019 --- Iran --- GPM IMERG --- satellite precipitation --- spatiotemporal analysis --- statistical distribution --- validation --- Mainland China --- GSMaP_NRT --- GSMaP_Gauge_NRT --- raindrop size distribution --- radar reflectivity --- raindrop spectrometer --- semi-arid area --- assessment --- Taiwan --- data assimilation --- WRF model --- high-impact rainfall events --- GNSS ZTD --- optimum interpolation --- geographically weighted regression --- downscaling --- Tianshan Mountains --- satellite precipitation products --- evaluation --- daily rainfall --- hourly rainfall --- GPM --- TRMM --- GNSS --- GNSS antenna --- receiver antenna calibration --- relative calibration --- Phase Center Variation --- U-blox --- goGPS --- Zenith Tropospheric Delay --- ZED-F9P --- GSMaP --- Nepal --- cloud radar --- thunderstorm --- LDR --- hydrometeor --- hydrometeor classification --- lightning --- discharge --- remote sensing --- SEVIRI --- ground radar --- precipitation interpolation --- geographically and temporally weighted regression --- time weight function --- geographically and temporally weighted regression kriging --- extreme rainfall --- polarimetric radar signatures --- quantitative precipitation estimation --- southern china --- reanalysis --- linear trends --- mainland China --- EDBF algorithm --- geospatial predictor --- spatial pattern --- weighted precipitation --- Cyprus --- bias correction --- object-based method --- storm events --- Thies --- disdrometer --- weather circulations --- convective --- stratiform --- rain spectra --- radar reflectivity–rain rate relationship --- gridded precipitation products --- abrupt changes --- trends --- statistical indicators --- agriculture --- Pakistan --- rainfall --- radar --- extreme precipitation --- spatial bootstrap --- Louisiana --- annual maxima --- n/a --- radar reflectivity-rain rate relationship


Book
Remote Sensing of Precipitation: Part II
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Precipitation is a well-recognized pillar in the global water and energy balances. The accurate and timely understanding of its characteristics at the global, regional and local scales is indispensable for a clearer insight on the mechanisms underlying the Earth’s atmosphere-ocean complex system. Precipitation is one of the elements that is documented to be greatly affected by climate change. In its various forms, precipitation comprises the primary source of freshwater, which is vital for the sustainability of almost all human activities. Its socio-economic significance is fundamental in managing this natural resource effectively, in applications ranging from irrigation to industrial and household usage. Remote sensing of precipitation is pursued through a broad spectrum of continuously enriched and upgraded instrumentation, embracing sensors which can be ground-based (e.g., weather radars), satellite-borne (e.g., passive or active space-borne sensors), underwater (e.g., hydrophones), aerial, or ship-borne. This volume hosts original research contributions on several aspects of remote sensing of precipitation, including applications which embrace the use of remote sensing in tackling issues such as precipitation estimation, seasonal characteristics of precipitation and frequency analysis, assessment of satellite precipitation products, storm prediction, rain microphysics and microstructure, and the comparison of satellite and numerical weather prediction precipitation products.

Keywords

Research & information: general --- Northern China --- raindrop size distribution (DSD) --- microphysical processes --- quantitative precipitation estimation (QPE) --- satellite-based precipitation --- elevation --- extreme events --- IMERG-V05B and V06A --- MSWEP --- ERA5 --- SM2RAIN --- precipitation estimation --- soil moisture --- SM2RAIN-CCI --- SM2RAIN-ASCAT --- multi-satellite precipitation analysis (TMPA) --- error decomposition --- complex topography --- diverse climate --- gauge data --- IMERG --- TAHMO --- morphing --- field displacement --- TIGGE --- precipitation --- numerical weather prediction --- satellite --- flood --- spring 2019 --- Iran --- GPM IMERG --- satellite precipitation --- spatiotemporal analysis --- statistical distribution --- validation --- Mainland China --- GSMaP_NRT --- GSMaP_Gauge_NRT --- raindrop size distribution --- radar reflectivity --- raindrop spectrometer --- semi-arid area --- assessment --- Taiwan --- data assimilation --- WRF model --- high-impact rainfall events --- GNSS ZTD --- optimum interpolation --- geographically weighted regression --- downscaling --- Tianshan Mountains --- satellite precipitation products --- evaluation --- daily rainfall --- hourly rainfall --- GPM --- TRMM --- GNSS --- GNSS antenna --- receiver antenna calibration --- relative calibration --- Phase Center Variation --- U-blox --- goGPS --- Zenith Tropospheric Delay --- ZED-F9P --- GSMaP --- Nepal --- cloud radar --- thunderstorm --- LDR --- hydrometeor --- hydrometeor classification --- lightning --- discharge --- remote sensing --- SEVIRI --- ground radar --- precipitation interpolation --- geographically and temporally weighted regression --- time weight function --- geographically and temporally weighted regression kriging --- extreme rainfall --- polarimetric radar signatures --- quantitative precipitation estimation --- southern china --- reanalysis --- linear trends --- mainland China --- EDBF algorithm --- geospatial predictor --- spatial pattern --- weighted precipitation --- Cyprus --- bias correction --- object-based method --- storm events --- Thies --- disdrometer --- weather circulations --- convective --- stratiform --- rain spectra --- radar reflectivity–rain rate relationship --- gridded precipitation products --- abrupt changes --- trends --- statistical indicators --- agriculture --- Pakistan --- rainfall --- radar --- extreme precipitation --- spatial bootstrap --- Louisiana --- annual maxima --- n/a --- radar reflectivity-rain rate relationship


Book
Remote Sensing of Precipitation: Part II
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Precipitation is a well-recognized pillar in the global water and energy balances. The accurate and timely understanding of its characteristics at the global, regional and local scales is indispensable for a clearer insight on the mechanisms underlying the Earth’s atmosphere-ocean complex system. Precipitation is one of the elements that is documented to be greatly affected by climate change. In its various forms, precipitation comprises the primary source of freshwater, which is vital for the sustainability of almost all human activities. Its socio-economic significance is fundamental in managing this natural resource effectively, in applications ranging from irrigation to industrial and household usage. Remote sensing of precipitation is pursued through a broad spectrum of continuously enriched and upgraded instrumentation, embracing sensors which can be ground-based (e.g., weather radars), satellite-borne (e.g., passive or active space-borne sensors), underwater (e.g., hydrophones), aerial, or ship-borne. This volume hosts original research contributions on several aspects of remote sensing of precipitation, including applications which embrace the use of remote sensing in tackling issues such as precipitation estimation, seasonal characteristics of precipitation and frequency analysis, assessment of satellite precipitation products, storm prediction, rain microphysics and microstructure, and the comparison of satellite and numerical weather prediction precipitation products.

Keywords

Northern China --- raindrop size distribution (DSD) --- microphysical processes --- quantitative precipitation estimation (QPE) --- satellite-based precipitation --- elevation --- extreme events --- IMERG-V05B and V06A --- MSWEP --- ERA5 --- SM2RAIN --- precipitation estimation --- soil moisture --- SM2RAIN-CCI --- SM2RAIN-ASCAT --- multi-satellite precipitation analysis (TMPA) --- error decomposition --- complex topography --- diverse climate --- gauge data --- IMERG --- TAHMO --- morphing --- field displacement --- TIGGE --- precipitation --- numerical weather prediction --- satellite --- flood --- spring 2019 --- Iran --- GPM IMERG --- satellite precipitation --- spatiotemporal analysis --- statistical distribution --- validation --- Mainland China --- GSMaP_NRT --- GSMaP_Gauge_NRT --- raindrop size distribution --- radar reflectivity --- raindrop spectrometer --- semi-arid area --- assessment --- Taiwan --- data assimilation --- WRF model --- high-impact rainfall events --- GNSS ZTD --- optimum interpolation --- geographically weighted regression --- downscaling --- Tianshan Mountains --- satellite precipitation products --- evaluation --- daily rainfall --- hourly rainfall --- GPM --- TRMM --- GNSS --- GNSS antenna --- receiver antenna calibration --- relative calibration --- Phase Center Variation --- U-blox --- goGPS --- Zenith Tropospheric Delay --- ZED-F9P --- GSMaP --- Nepal --- cloud radar --- thunderstorm --- LDR --- hydrometeor --- hydrometeor classification --- lightning --- discharge --- remote sensing --- SEVIRI --- ground radar --- precipitation interpolation --- geographically and temporally weighted regression --- time weight function --- geographically and temporally weighted regression kriging --- extreme rainfall --- polarimetric radar signatures --- quantitative precipitation estimation --- southern china --- reanalysis --- linear trends --- mainland China --- EDBF algorithm --- geospatial predictor --- spatial pattern --- weighted precipitation --- Cyprus --- bias correction --- object-based method --- storm events --- Thies --- disdrometer --- weather circulations --- convective --- stratiform --- rain spectra --- radar reflectivity–rain rate relationship --- gridded precipitation products --- abrupt changes --- trends --- statistical indicators --- agriculture --- Pakistan --- rainfall --- radar --- extreme precipitation --- spatial bootstrap --- Louisiana --- annual maxima --- n/a --- radar reflectivity-rain rate relationship


Book
Recent Advancements in Radar Imaging and Sensing Technology
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The aim of this Printed Edition of Special Issue entitled "Recent Advancements in Radar Imaging and Sensing Technology” was to gather the latest research results in the area of modern radar technology using active and/or radar imaging sensing techniques in different applications, including both military use and a broad spectrum of civilian applications. As a result, the 19 papers that have been published highlighted a variety of topics related to modern radar imaging and microwave sensing technology. The sequence of articles included in the Printed Edition of Special Issue dealt with wide aspects of different applications of radar imaging and sensing technology in the area of topics including high-resolution radar imaging, novel Synthetic Apertura Radar (SAR) and Inverse SAR (ISAR) imaging techniques, passive radar imaging technology, modern civilian applications of using radar technology for sensing, multiply-input multiply-output (MIMO) SAR imaging, tomography imaging, among others.

Keywords

Technology: general issues --- microwave staring correlated imaging (MSCI) --- gain–phase errors --- strip --- self-calibration --- distributed MIMO radar --- target localization --- double-sided bistatic range (BR) --- microwave staring correlated imaging --- unsteady aerostat platform --- motion parameter fitting --- position error --- radar imaging --- synthetic aperture radar --- compressed sensing --- sparse reconstruction --- regularization --- passive forward scattering radar --- chirp rate estimation --- passive radar --- forward scattering radar --- radar measurements --- time-frequency analysis --- bistatic synthetic aperture radar (SAR) --- hyperbolic approximation --- phase compensation --- modified omega-K --- ground-penetrating radar --- noise suppression --- singular value decomposition --- Hankel matrix --- window length optimization --- synthetic aperture radar (SAR) --- high resolution wide swath (HRWS) --- azimuth multichannel reconstruction --- phase center adaptation --- false targets suppression --- damped exponential (DE) model --- inverse synthetic aperture radar (ISAR) --- radar signatures --- state–space approach (SSA) --- sparse representation --- polarimetric --- SAR tomography --- MIMO radar --- noise radar --- radar signal processing techniques --- analogue correlation --- modern radar applications --- delay line --- high pulse repetition frequency (HPRF) --- random frequency hopping (RFH) --- hypersonic aircraft --- SAR --- Synthetic Aperture Radar --- ASIFT --- Despeckling Filter --- Navigation --- Structure from Motion --- Iterative Closest Point --- radar tomography --- compressive sensing --- bistatic radar --- parameter-refined orthogonal matching pursuit (PROMP) --- orthogonal matching pursuit (OMP) --- k-space tomography --- narrowband radar --- off-grid compressive sensing --- slow-time k-space --- spatial frequency --- Doppler radar tomography --- k-space augmentation --- high-resolution narrowband radar --- multiband processing --- bandwidth stitching --- multi-scale representation learning (MSRL) --- pyramid pooling module (PPM) --- compact depth-wise separable convolution (CSeConv) --- convolution auto-encoder (CAE) --- object classification --- CARABAS II --- ground scene prediction --- image stack --- multi-pass --- SAR images --- moving targets --- inverse SAR (ISAR) --- motion compensation --- hybrid SAR/ISAR --- improved rank-one phase estimation (IROPE) --- Gaofen-3 (GF-3) --- assive radar --- time-frequency reassignment


Book
Recent Advancements in Radar Imaging and Sensing Technology
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The aim of this Printed Edition of Special Issue entitled "Recent Advancements in Radar Imaging and Sensing Technology” was to gather the latest research results in the area of modern radar technology using active and/or radar imaging sensing techniques in different applications, including both military use and a broad spectrum of civilian applications. As a result, the 19 papers that have been published highlighted a variety of topics related to modern radar imaging and microwave sensing technology. The sequence of articles included in the Printed Edition of Special Issue dealt with wide aspects of different applications of radar imaging and sensing technology in the area of topics including high-resolution radar imaging, novel Synthetic Apertura Radar (SAR) and Inverse SAR (ISAR) imaging techniques, passive radar imaging technology, modern civilian applications of using radar technology for sensing, multiply-input multiply-output (MIMO) SAR imaging, tomography imaging, among others.

Keywords

Technology: general issues --- microwave staring correlated imaging (MSCI) --- gain–phase errors --- strip --- self-calibration --- distributed MIMO radar --- target localization --- double-sided bistatic range (BR) --- microwave staring correlated imaging --- unsteady aerostat platform --- motion parameter fitting --- position error --- radar imaging --- synthetic aperture radar --- compressed sensing --- sparse reconstruction --- regularization --- passive forward scattering radar --- chirp rate estimation --- passive radar --- forward scattering radar --- radar measurements --- time-frequency analysis --- bistatic synthetic aperture radar (SAR) --- hyperbolic approximation --- phase compensation --- modified omega-K --- ground-penetrating radar --- noise suppression --- singular value decomposition --- Hankel matrix --- window length optimization --- synthetic aperture radar (SAR) --- high resolution wide swath (HRWS) --- azimuth multichannel reconstruction --- phase center adaptation --- false targets suppression --- damped exponential (DE) model --- inverse synthetic aperture radar (ISAR) --- radar signatures --- state–space approach (SSA) --- sparse representation --- polarimetric --- SAR tomography --- MIMO radar --- noise radar --- radar signal processing techniques --- analogue correlation --- modern radar applications --- delay line --- high pulse repetition frequency (HPRF) --- random frequency hopping (RFH) --- hypersonic aircraft --- SAR --- Synthetic Aperture Radar --- ASIFT --- Despeckling Filter --- Navigation --- Structure from Motion --- Iterative Closest Point --- radar tomography --- compressive sensing --- bistatic radar --- parameter-refined orthogonal matching pursuit (PROMP) --- orthogonal matching pursuit (OMP) --- k-space tomography --- narrowband radar --- off-grid compressive sensing --- slow-time k-space --- spatial frequency --- Doppler radar tomography --- k-space augmentation --- high-resolution narrowband radar --- multiband processing --- bandwidth stitching --- multi-scale representation learning (MSRL) --- pyramid pooling module (PPM) --- compact depth-wise separable convolution (CSeConv) --- convolution auto-encoder (CAE) --- object classification --- CARABAS II --- ground scene prediction --- image stack --- multi-pass --- SAR images --- moving targets --- inverse SAR (ISAR) --- motion compensation --- hybrid SAR/ISAR --- improved rank-one phase estimation (IROPE) --- Gaofen-3 (GF-3) --- assive radar --- time-frequency reassignment


Book
Recent Advancements in Radar Imaging and Sensing Technology
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The aim of this Printed Edition of Special Issue entitled "Recent Advancements in Radar Imaging and Sensing Technology” was to gather the latest research results in the area of modern radar technology using active and/or radar imaging sensing techniques in different applications, including both military use and a broad spectrum of civilian applications. As a result, the 19 papers that have been published highlighted a variety of topics related to modern radar imaging and microwave sensing technology. The sequence of articles included in the Printed Edition of Special Issue dealt with wide aspects of different applications of radar imaging and sensing technology in the area of topics including high-resolution radar imaging, novel Synthetic Apertura Radar (SAR) and Inverse SAR (ISAR) imaging techniques, passive radar imaging technology, modern civilian applications of using radar technology for sensing, multiply-input multiply-output (MIMO) SAR imaging, tomography imaging, among others.

Keywords

microwave staring correlated imaging (MSCI) --- gain–phase errors --- strip --- self-calibration --- distributed MIMO radar --- target localization --- double-sided bistatic range (BR) --- microwave staring correlated imaging --- unsteady aerostat platform --- motion parameter fitting --- position error --- radar imaging --- synthetic aperture radar --- compressed sensing --- sparse reconstruction --- regularization --- passive forward scattering radar --- chirp rate estimation --- passive radar --- forward scattering radar --- radar measurements --- time-frequency analysis --- bistatic synthetic aperture radar (SAR) --- hyperbolic approximation --- phase compensation --- modified omega-K --- ground-penetrating radar --- noise suppression --- singular value decomposition --- Hankel matrix --- window length optimization --- synthetic aperture radar (SAR) --- high resolution wide swath (HRWS) --- azimuth multichannel reconstruction --- phase center adaptation --- false targets suppression --- damped exponential (DE) model --- inverse synthetic aperture radar (ISAR) --- radar signatures --- state–space approach (SSA) --- sparse representation --- polarimetric --- SAR tomography --- MIMO radar --- noise radar --- radar signal processing techniques --- analogue correlation --- modern radar applications --- delay line --- high pulse repetition frequency (HPRF) --- random frequency hopping (RFH) --- hypersonic aircraft --- SAR --- Synthetic Aperture Radar --- ASIFT --- Despeckling Filter --- Navigation --- Structure from Motion --- Iterative Closest Point --- radar tomography --- compressive sensing --- bistatic radar --- parameter-refined orthogonal matching pursuit (PROMP) --- orthogonal matching pursuit (OMP) --- k-space tomography --- narrowband radar --- off-grid compressive sensing --- slow-time k-space --- spatial frequency --- Doppler radar tomography --- k-space augmentation --- high-resolution narrowband radar --- multiband processing --- bandwidth stitching --- multi-scale representation learning (MSRL) --- pyramid pooling module (PPM) --- compact depth-wise separable convolution (CSeConv) --- convolution auto-encoder (CAE) --- object classification --- CARABAS II --- ground scene prediction --- image stack --- multi-pass --- SAR images --- moving targets --- inverse SAR (ISAR) --- motion compensation --- hybrid SAR/ISAR --- improved rank-one phase estimation (IROPE) --- Gaofen-3 (GF-3) --- assive radar --- time-frequency reassignment

Listing 1 - 6 of 6
Sort by