Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULB (2)

ULiège (2)

VIVES (2)

More...

Resource type

book (6)


Language

English (6)


Year
From To Submit

2021 (3)

2020 (3)

Listing 1 - 6 of 6
Sort by

Book
Emerging Converter Topologies and Control for Grid Connected Photovoltaic Systems
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Continuous cost reduction of photovoltaic (PV) systems and the rise of power auctions resulted in the establishment of PV power not only as a green energy source but also as a cost-effective solution to the electricity generation market. Various commercial solutions for grid-connected PV systems are available at any power level, ranging from multi-megawatt utility-scale solar farms to sub-kilowatt residential PV installations. Compared to utility-scale systems, the feasibility of small-scale residential PV installations is still limited by existing technologies that have not yet properly address issues like operation in weak grids, opaque and partial shading, etc. New market drivers such as warranty improvement to match the PV module lifespan, operation voltage range extension for application flexibility, and embedded energy storage for load shifting have again put small-scale PV systems in the spotlight. This Special Issue collects the latest developments in the field of power electronic converter topologies, control, design, and optimization for better energy yield, power conversion efficiency, reliability, and longer lifetime of the small-scale PV systems. This Special Issue will serve as a reference and update for academics, researchers, and practicing engineers to inspire new research and developments that pave the way for next-generation PV systems for residential and small commercial applications.

Keywords

History of engineering & technology --- three-phase rectifier --- PFC --- switch-mode rectifier --- ZVS --- ZCS --- single stage micro-inverter --- burst control --- variable frequency control --- maximum power-point tracking --- grid-connected photovoltaic systems --- cascade multilevel converters --- multistring converters --- T-type converters --- power clipping --- ESS sizing --- grid-tied PV plant --- cascaded H-bridge --- photovoltaic inverter --- module level --- switching modulation strategy --- energy yield --- photovoltaic (PV) --- virtual synchronous generator (VSG) --- frequency response (FR) --- power reserve control (PRC) --- active power up-regulation --- dual inverter --- open-end winding transformer --- photovoltaic application --- filter --- DC–AC converters --- efficiency --- neutral-point-clamped inverter --- PV applications --- PV inverters --- PV systems --- quasi-z-source --- two-level inverter --- three-level inverter --- converter topologies --- partial shading --- photovoltaic (PV) arrays --- multiple maximas --- mismatch --- differential power processing (DPP) --- series-parallel (SP) --- total-cross-tied (TCT) --- bridge-linked (BL) --- center-cross-tied (CCT) --- quasi-Z-source inverter --- double-frequency ripple --- ripple vector cancellation --- shoot-through duty cycle --- modulation --- DC microgrid --- DC electric spring --- distributed cooperative control --- adaptive droop control --- consensus algorithm --- Electric spring --- hierarchical control --- coordinated control --- power decoupling control --- droop control --- microgrid --- microinverter --- variable dc-link voltage --- photovoltaic --- solar energy --- renewable energy --- residential systems --- PV generators --- active power --- reactive power --- Renewable energy --- grid codes --- capability curves --- transformerless inverter --- full bridge inverter --- leakage current --- NPC topology --- full-bridge inverter --- PV microinverters --- single-stage --- buck-boost --- tapped inductor --- modular multilevel converter --- photovoltaic power system --- grid integration --- control system --- distributed renewable energy source --- energy storage --- 1500 V photovoltaic (PV) --- reliability --- cost-oriented design --- DC–DC converter --- series resonance converter --- wide range converter --- bidirectional switch --- conversion efficiency


Book
Computational Intelligence for Modeling, Control, Optimization, Forecasting and Diagnostics in Photovoltaic Applications
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is a Special Issue Reprint edited by Prof. Massimo Vitelli and Dr. Luigi Costanzo. It contains original research articles covering, but not limited to, the following topics: maximum power point tracking techniques; forecasting techniques; sizing and optimization of PV components and systems; PV modeling; reconfiguration algorithms; fault diagnosis; mismatching detection; decision processes for grid operators.

Keywords

History of engineering & technology --- sensor network --- data fusion --- complex network analysis --- fault prognosis --- photovoltaic plants --- ANFIS --- statistical method --- gradient descent --- photovoltaic system --- sustainable development --- PV power prediction --- artificial neural network --- renewable energy --- environmental parameters --- multiple regression model --- moth-flame optimization --- parameter extraction --- photovoltaic model --- double flames generation (DFG) strategy --- Solar cell parameters --- single-diode model --- two-diode model --- COA --- photovoltaic systems --- maximum power point tracking --- single stage grid connected systems --- solar concentrator --- spectral beam splitting --- diffractive optical element --- diffractive grating --- PVs power output forecasting --- adaptive neuro-fuzzy inference systems --- particle swarm optimization-artificial neural networks --- solar irradiation --- photovoltaic power prediction --- publicly available weather reports --- machine learning --- long short-term memory --- integrated energy systems --- smart energy management --- PV fleet --- clustering-based PV fault detection --- unsupervised learning --- self-imputation --- implicit model solution --- photovoltaic array --- series–parallel --- global optimization --- partial shading --- deterministic optimization algorithm --- metaheuristic optimization algorithm --- genetic algorithm --- solar cell optimization --- finite difference time domain --- optical modelling --- thermal image --- photovoltaic module --- hot spot --- image processing --- deterioration --- linear approximation --- MPPT algorithm --- duty cycle --- global horizontal irradiance --- mathematical modeling --- feed-forward neural networks --- recurrent neural networks --- LSTM cell --- performances evaluation --- clear sky irradiance --- persistent predictor --- photovoltaics --- artificial neural networks --- national power system


Book
Emerging Converter Topologies and Control for Grid Connected Photovoltaic Systems
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Continuous cost reduction of photovoltaic (PV) systems and the rise of power auctions resulted in the establishment of PV power not only as a green energy source but also as a cost-effective solution to the electricity generation market. Various commercial solutions for grid-connected PV systems are available at any power level, ranging from multi-megawatt utility-scale solar farms to sub-kilowatt residential PV installations. Compared to utility-scale systems, the feasibility of small-scale residential PV installations is still limited by existing technologies that have not yet properly address issues like operation in weak grids, opaque and partial shading, etc. New market drivers such as warranty improvement to match the PV module lifespan, operation voltage range extension for application flexibility, and embedded energy storage for load shifting have again put small-scale PV systems in the spotlight. This Special Issue collects the latest developments in the field of power electronic converter topologies, control, design, and optimization for better energy yield, power conversion efficiency, reliability, and longer lifetime of the small-scale PV systems. This Special Issue will serve as a reference and update for academics, researchers, and practicing engineers to inspire new research and developments that pave the way for next-generation PV systems for residential and small commercial applications.

Keywords

History of engineering & technology --- three-phase rectifier --- PFC --- switch-mode rectifier --- ZVS --- ZCS --- single stage micro-inverter --- burst control --- variable frequency control --- maximum power-point tracking --- grid-connected photovoltaic systems --- cascade multilevel converters --- multistring converters --- T-type converters --- power clipping --- ESS sizing --- grid-tied PV plant --- cascaded H-bridge --- photovoltaic inverter --- module level --- switching modulation strategy --- energy yield --- photovoltaic (PV) --- virtual synchronous generator (VSG) --- frequency response (FR) --- power reserve control (PRC) --- active power up-regulation --- dual inverter --- open-end winding transformer --- photovoltaic application --- filter --- DC–AC converters --- efficiency --- neutral-point-clamped inverter --- PV applications --- PV inverters --- PV systems --- quasi-z-source --- two-level inverter --- three-level inverter --- converter topologies --- partial shading --- photovoltaic (PV) arrays --- multiple maximas --- mismatch --- differential power processing (DPP) --- series-parallel (SP) --- total-cross-tied (TCT) --- bridge-linked (BL) --- center-cross-tied (CCT) --- quasi-Z-source inverter --- double-frequency ripple --- ripple vector cancellation --- shoot-through duty cycle --- modulation --- DC microgrid --- DC electric spring --- distributed cooperative control --- adaptive droop control --- consensus algorithm --- Electric spring --- hierarchical control --- coordinated control --- power decoupling control --- droop control --- microgrid --- microinverter --- variable dc-link voltage --- photovoltaic --- solar energy --- renewable energy --- residential systems --- PV generators --- active power --- reactive power --- Renewable energy --- grid codes --- capability curves --- transformerless inverter --- full bridge inverter --- leakage current --- NPC topology --- full-bridge inverter --- PV microinverters --- single-stage --- buck-boost --- tapped inductor --- modular multilevel converter --- photovoltaic power system --- grid integration --- control system --- distributed renewable energy source --- energy storage --- 1500 V photovoltaic (PV) --- reliability --- cost-oriented design --- DC–DC converter --- series resonance converter --- wide range converter --- bidirectional switch --- conversion efficiency


Book
Computational Intelligence for Modeling, Control, Optimization, Forecasting and Diagnostics in Photovoltaic Applications
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is a Special Issue Reprint edited by Prof. Massimo Vitelli and Dr. Luigi Costanzo. It contains original research articles covering, but not limited to, the following topics: maximum power point tracking techniques; forecasting techniques; sizing and optimization of PV components and systems; PV modeling; reconfiguration algorithms; fault diagnosis; mismatching detection; decision processes for grid operators.

Keywords

History of engineering & technology --- sensor network --- data fusion --- complex network analysis --- fault prognosis --- photovoltaic plants --- ANFIS --- statistical method --- gradient descent --- photovoltaic system --- sustainable development --- PV power prediction --- artificial neural network --- renewable energy --- environmental parameters --- multiple regression model --- moth-flame optimization --- parameter extraction --- photovoltaic model --- double flames generation (DFG) strategy --- Solar cell parameters --- single-diode model --- two-diode model --- COA --- photovoltaic systems --- maximum power point tracking --- single stage grid connected systems --- solar concentrator --- spectral beam splitting --- diffractive optical element --- diffractive grating --- PVs power output forecasting --- adaptive neuro-fuzzy inference systems --- particle swarm optimization-artificial neural networks --- solar irradiation --- photovoltaic power prediction --- publicly available weather reports --- machine learning --- long short-term memory --- integrated energy systems --- smart energy management --- PV fleet --- clustering-based PV fault detection --- unsupervised learning --- self-imputation --- implicit model solution --- photovoltaic array --- series–parallel --- global optimization --- partial shading --- deterministic optimization algorithm --- metaheuristic optimization algorithm --- genetic algorithm --- solar cell optimization --- finite difference time domain --- optical modelling --- thermal image --- photovoltaic module --- hot spot --- image processing --- deterioration --- linear approximation --- MPPT algorithm --- duty cycle --- global horizontal irradiance --- mathematical modeling --- feed-forward neural networks --- recurrent neural networks --- LSTM cell --- performances evaluation --- clear sky irradiance --- persistent predictor --- photovoltaics --- artificial neural networks --- national power system


Book
Computational Intelligence for Modeling, Control, Optimization, Forecasting and Diagnostics in Photovoltaic Applications
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is a Special Issue Reprint edited by Prof. Massimo Vitelli and Dr. Luigi Costanzo. It contains original research articles covering, but not limited to, the following topics: maximum power point tracking techniques; forecasting techniques; sizing and optimization of PV components and systems; PV modeling; reconfiguration algorithms; fault diagnosis; mismatching detection; decision processes for grid operators.

Keywords

sensor network --- data fusion --- complex network analysis --- fault prognosis --- photovoltaic plants --- ANFIS --- statistical method --- gradient descent --- photovoltaic system --- sustainable development --- PV power prediction --- artificial neural network --- renewable energy --- environmental parameters --- multiple regression model --- moth-flame optimization --- parameter extraction --- photovoltaic model --- double flames generation (DFG) strategy --- Solar cell parameters --- single-diode model --- two-diode model --- COA --- photovoltaic systems --- maximum power point tracking --- single stage grid connected systems --- solar concentrator --- spectral beam splitting --- diffractive optical element --- diffractive grating --- PVs power output forecasting --- adaptive neuro-fuzzy inference systems --- particle swarm optimization-artificial neural networks --- solar irradiation --- photovoltaic power prediction --- publicly available weather reports --- machine learning --- long short-term memory --- integrated energy systems --- smart energy management --- PV fleet --- clustering-based PV fault detection --- unsupervised learning --- self-imputation --- implicit model solution --- photovoltaic array --- series–parallel --- global optimization --- partial shading --- deterministic optimization algorithm --- metaheuristic optimization algorithm --- genetic algorithm --- solar cell optimization --- finite difference time domain --- optical modelling --- thermal image --- photovoltaic module --- hot spot --- image processing --- deterioration --- linear approximation --- MPPT algorithm --- duty cycle --- global horizontal irradiance --- mathematical modeling --- feed-forward neural networks --- recurrent neural networks --- LSTM cell --- performances evaluation --- clear sky irradiance --- persistent predictor --- photovoltaics --- artificial neural networks --- national power system


Book
Emerging Converter Topologies and Control for Grid Connected Photovoltaic Systems
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Continuous cost reduction of photovoltaic (PV) systems and the rise of power auctions resulted in the establishment of PV power not only as a green energy source but also as a cost-effective solution to the electricity generation market. Various commercial solutions for grid-connected PV systems are available at any power level, ranging from multi-megawatt utility-scale solar farms to sub-kilowatt residential PV installations. Compared to utility-scale systems, the feasibility of small-scale residential PV installations is still limited by existing technologies that have not yet properly address issues like operation in weak grids, opaque and partial shading, etc. New market drivers such as warranty improvement to match the PV module lifespan, operation voltage range extension for application flexibility, and embedded energy storage for load shifting have again put small-scale PV systems in the spotlight. This Special Issue collects the latest developments in the field of power electronic converter topologies, control, design, and optimization for better energy yield, power conversion efficiency, reliability, and longer lifetime of the small-scale PV systems. This Special Issue will serve as a reference and update for academics, researchers, and practicing engineers to inspire new research and developments that pave the way for next-generation PV systems for residential and small commercial applications.

Keywords

three-phase rectifier --- PFC --- switch-mode rectifier --- ZVS --- ZCS --- single stage micro-inverter --- burst control --- variable frequency control --- maximum power-point tracking --- grid-connected photovoltaic systems --- cascade multilevel converters --- multistring converters --- T-type converters --- power clipping --- ESS sizing --- grid-tied PV plant --- cascaded H-bridge --- photovoltaic inverter --- module level --- switching modulation strategy --- energy yield --- photovoltaic (PV) --- virtual synchronous generator (VSG) --- frequency response (FR) --- power reserve control (PRC) --- active power up-regulation --- dual inverter --- open-end winding transformer --- photovoltaic application --- filter --- DC–AC converters --- efficiency --- neutral-point-clamped inverter --- PV applications --- PV inverters --- PV systems --- quasi-z-source --- two-level inverter --- three-level inverter --- converter topologies --- partial shading --- photovoltaic (PV) arrays --- multiple maximas --- mismatch --- differential power processing (DPP) --- series-parallel (SP) --- total-cross-tied (TCT) --- bridge-linked (BL) --- center-cross-tied (CCT) --- quasi-Z-source inverter --- double-frequency ripple --- ripple vector cancellation --- shoot-through duty cycle --- modulation --- DC microgrid --- DC electric spring --- distributed cooperative control --- adaptive droop control --- consensus algorithm --- Electric spring --- hierarchical control --- coordinated control --- power decoupling control --- droop control --- microgrid --- microinverter --- variable dc-link voltage --- photovoltaic --- solar energy --- renewable energy --- residential systems --- PV generators --- active power --- reactive power --- Renewable energy --- grid codes --- capability curves --- transformerless inverter --- full bridge inverter --- leakage current --- NPC topology --- full-bridge inverter --- PV microinverters --- single-stage --- buck-boost --- tapped inductor --- modular multilevel converter --- photovoltaic power system --- grid integration --- control system --- distributed renewable energy source --- energy storage --- 1500 V photovoltaic (PV) --- reliability --- cost-oriented design --- DC–DC converter --- series resonance converter --- wide range converter --- bidirectional switch --- conversion efficiency

Listing 1 - 6 of 6
Sort by