Narrow your search
Listing 1 - 10 of 35 << page
of 4
>>
Sort by

Book
Symposium on acoustical materials
Author:
Year: 1951 Publisher: Philadelphia, PA : ASTM (American Society for Testing & Materials),

Loading...
Export citation

Choose an application

Bookmark

Abstract

Acoustic absorbers and diffusers: theory, design and application
Authors: ---
ISBN: 0415296498 Year: 2004 Publisher: London Spon Press


Book
Acoustic Properties of Absorbing Materials
Authors: --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Thanks to the progress made in materials research and to the introduction of innovative manufacturing technologies, a wide range of sound-absorbing elements are currently available to adjust the acoustic features of an environment. Nowadays, performance is only one of the required specifications, together with environmental compatibility, longevity, and affordable cost. This book collects the most recent advances in the broad-spectrum characterization of sound-absorbing materials used in civil, industrial, and tertiary applications, by means of experimental, numerical, or theoretical studies.

Keywords

Technology: general issues --- History of engineering & technology --- hollow perforated spherical structure with extended tubes --- low frequency sound absorption --- melamine foam --- wideband sound absorber --- speech clarity --- bass ratio --- sound absorption --- reverberation time --- acoustics --- aerogels --- modeling --- fiber --- porous materials --- acoustic measurements --- sound absorption coefficient --- cement-based materials --- building materials --- pervious concrete --- acoustic concrete --- household end-of-life materials --- building retrofitting --- sound insulation --- vulnerable houses --- circular economy --- egg-box --- cardboard --- textile waste --- reuse --- shunted loudspeaker --- optimal sound absorption --- fully exhaustive method --- steel industry by-products --- sound reduction index --- granular materials --- inverse method --- cross laminated timber --- impact noise --- rubber ball --- sustainable --- timber --- perforated plate --- stepwise apertures --- low frequency --- membranes --- measurement method --- transmission loss --- simulations --- experiment --- scattering effect --- diffusion coefficient --- reflecting panels --- QRD --- ISO 17497 --- hollow perforated spherical structure with extended tubes --- low frequency sound absorption --- melamine foam --- wideband sound absorber --- speech clarity --- bass ratio --- sound absorption --- reverberation time --- acoustics --- aerogels --- modeling --- fiber --- porous materials --- acoustic measurements --- sound absorption coefficient --- cement-based materials --- building materials --- pervious concrete --- acoustic concrete --- household end-of-life materials --- building retrofitting --- sound insulation --- vulnerable houses --- circular economy --- egg-box --- cardboard --- textile waste --- reuse --- shunted loudspeaker --- optimal sound absorption --- fully exhaustive method --- steel industry by-products --- sound reduction index --- granular materials --- inverse method --- cross laminated timber --- impact noise --- rubber ball --- sustainable --- timber --- perforated plate --- stepwise apertures --- low frequency --- membranes --- measurement method --- transmission loss --- simulations --- experiment --- scattering effect --- diffusion coefficient --- reflecting panels --- QRD --- ISO 17497

Designing quiet structures
Authors: ---
ISBN: 0124192459 9786611053840 1281053848 0080504043 9780080504049 9780124192454 Year: 1997 Publisher: San Diego Academic Press

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is the first of its kind. It provides the reader with a logical and highly quantitative means of including noise as a parameter in the early design stages of a machine or structure. The unique and unified methodology builds upon the familiar disciplines of acoustics, structural dynamics and optimization. It also exemplifies the art of simplification - the essence of all good engineering design. =Strategies for designing quiet structures require extensive analytical and experimental tools. For computing the sound power from complex structures the authors recommend a new 3-D, lumpe


Book
Acoustic Properties of Absorbing Materials
Authors: --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Thanks to the progress made in materials research and to the introduction of innovative manufacturing technologies, a wide range of sound-absorbing elements are currently available to adjust the acoustic features of an environment. Nowadays, performance is only one of the required specifications, together with environmental compatibility, longevity, and affordable cost. This book collects the most recent advances in the broad-spectrum characterization of sound-absorbing materials used in civil, industrial, and tertiary applications, by means of experimental, numerical, or theoretical studies.


Book
ECO-COMPASS
Authors: ---
ISBN: 3038976911 3038976903 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Today, mainly man-made materials, such as carbon and glass fibers, are used to produce composite parts in aviation. Renewable materials, such as natural fibers or bio-sourced resin systems, have not yet found their way into aviation. The project ECO-COMPASS aims to evaluate the potential applications of ecologically improved composite materials in the aviation sector in an international collaboration of Chinese and European partners. Natural fibers such as flax and ramie will be used for different types of reinforcements and sandwich cores. Furthermore, bio-based epoxy resins to substitute bisphenol-A based epoxy resins in secondary structures are under investigation. Adapted material protection technologies to reduce environmental influence and to improve fire resistance are needed to fulfil the demanding safety requirements in aviation. Modelling and simulation of chosen eco-composites aims for an optimized use of materials while a Life Cycle Assessment aims to prove the ecological advantages compared to synthetic state-of-the-art materials. This Special Issue provides selected papers from the project consortium partners.


Book
Innovative Composite Materials for Sound Absorption and Insulation
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Materials with sound-absorbing or sound-insulating properties have been rapidly evolving in recent years for several reasons. On one side, there is the ever-increasing awareness of the adverse effects that noise and lack of acoustic comfort may have on human health. On the other, the availability of more sophisticated fabrication techniques, calculation methods, and new materials, has stimulated researchers and, more and more frequently, industry to develop customized materials with improved properties.This book collects contributions from different researchers covering several topics. A group of papers investigated the use of 3D printing to obtain perforated panels with extended frequency response, as well as to ideally design an optimized cell distribution to print (when fabrication techniques will make it possible) a porous material with a broader sound absorption. The role of the geometrical and microstructural properties of granular molecular sieves is investigated by another paper. A second group of papers focused its attention on the use of natural or recycled components to create a skeleton of porous materials with good sound-absorbing properties and low environmental impact. Cigarette butts, recycled textile waste, and almond skins have been investigated by different authors.Finally, the last batch of papers included a review of sound insulation properties of innovative concretes and two research papers focussing on a numerical and experimental analysis of wood plastic composite (WPC) panels and on the potential of semi-active solutions employing compressible constrained layer damping (CCLD).


Book
Innovative Composite Materials for Sound Absorption and Insulation
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Materials with sound-absorbing or sound-insulating properties have been rapidly evolving in recent years for several reasons. On one side, there is the ever-increasing awareness of the adverse effects that noise and lack of acoustic comfort may have on human health. On the other, the availability of more sophisticated fabrication techniques, calculation methods, and new materials, has stimulated researchers and, more and more frequently, industry to develop customized materials with improved properties.This book collects contributions from different researchers covering several topics. A group of papers investigated the use of 3D printing to obtain perforated panels with extended frequency response, as well as to ideally design an optimized cell distribution to print (when fabrication techniques will make it possible) a porous material with a broader sound absorption. The role of the geometrical and microstructural properties of granular molecular sieves is investigated by another paper. A second group of papers focused its attention on the use of natural or recycled components to create a skeleton of porous materials with good sound-absorbing properties and low environmental impact. Cigarette butts, recycled textile waste, and almond skins have been investigated by different authors.Finally, the last batch of papers included a review of sound insulation properties of innovative concretes and two research papers focussing on a numerical and experimental analysis of wood plastic composite (WPC) panels and on the potential of semi-active solutions employing compressible constrained layer damping (CCLD).


Book
Advances in Architectural Acoustics
Authors: --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Satisfactory acoustics is crucial for the ability of spaces such as auditoriums and lecture rooms to perform their primary function. The acoustics of dwellings and offices greatly affects the quality of our life, since we are all consciously or subconsciously aware of the sounds to which we are daily subjected. Architectural acoustics, which encompasses room and building acoustics, is the scientific field that deals with these topics and can be defined as the study of generation, propagation, and effects of sound in enclosures. Modeling techniques, as well as related acoustic theories for accurately calculating the sound field, have been the center of many major new developments. In addition, the image conveyed by a purely physical description of sound would be incomplete without regarding human perception; hence, the interrelation between objective stimuli and subjective sensations is a field of important investigations. A holistic approach in terms of research and practice is the optimum way for solving the perplexing problems which arise in the design or refurbishment of spaces, since current trends in contemporary architecture, such as transparency, openness, and preference for bare sound-reflecting surfaces are continuing pushing the very limits of functional acoustics. All the advances in architectural acoustics gathered in this Special Issue, we hope that inspire researchers and acousticians to explore new directions in this age of scientific convergence.

Keywords

Research & information: general --- Mathematics & science --- acoustic measurements --- impulse response measurements --- omnidirectional source --- dodecahedron --- acoustic parameters --- sound source --- reverberation time --- ISO 3382 --- auralization --- sound absorption --- perforated panels --- micro-perforated panels --- resonant absorbers --- frequency domain --- PUFEM --- room acoustics --- wave-based method --- discretization error --- explicit method --- finite element method --- high order scheme --- room acoustic simulations --- time domain --- shoebox concert hall --- diffusive surfaces --- diffusers location --- acoustical parameters --- variable acoustics --- subjective investigation --- acoustics --- opera house --- intangible cultural heritage --- open-air ancient theatres --- ISO 3382-1 --- firecrackers --- building acoustics --- sound absorption coefficient --- prediction models --- supervised learning method --- worship space acoustics --- acoustics simulation --- acoustic heritage --- archaeo-acoustics --- acoustic subspaces --- FDTD simulation --- speech intelligibility --- open-plan offices --- spatial decay --- ISO 3382-3 --- room absorption --- office noise --- speech --- calculation models --- absorption --- scattering --- airflow resistivity --- long space --- coherent image source method --- sound-absorbing boundary --- sound field modeling --- scale-model experiment --- reflection power --- room response --- directional decay rates --- room modes --- eigenbeam processing --- spatial correlation --- concert hall acoustics --- lateral reflections --- shoebox typology --- spatial impression --- perception thresholds --- skeletal reflections --- reflection sequence --- seat dip effect --- seat height --- seat spacing --- mechanism --- acoustic measurements --- impulse response measurements --- omnidirectional source --- dodecahedron --- acoustic parameters --- sound source --- reverberation time --- ISO 3382 --- auralization --- sound absorption --- perforated panels --- micro-perforated panels --- resonant absorbers --- frequency domain --- PUFEM --- room acoustics --- wave-based method --- discretization error --- explicit method --- finite element method --- high order scheme --- room acoustic simulations --- time domain --- shoebox concert hall --- diffusive surfaces --- diffusers location --- acoustical parameters --- variable acoustics --- subjective investigation --- acoustics --- opera house --- intangible cultural heritage --- open-air ancient theatres --- ISO 3382-1 --- firecrackers --- building acoustics --- sound absorption coefficient --- prediction models --- supervised learning method --- worship space acoustics --- acoustics simulation --- acoustic heritage --- archaeo-acoustics --- acoustic subspaces --- FDTD simulation --- speech intelligibility --- open-plan offices --- spatial decay --- ISO 3382-3 --- room absorption --- office noise --- speech --- calculation models --- absorption --- scattering --- airflow resistivity --- long space --- coherent image source method --- sound-absorbing boundary --- sound field modeling --- scale-model experiment --- reflection power --- room response --- directional decay rates --- room modes --- eigenbeam processing --- spatial correlation --- concert hall acoustics --- lateral reflections --- shoebox typology --- spatial impression --- perception thresholds --- skeletal reflections --- reflection sequence --- seat dip effect --- seat height --- seat spacing --- mechanism


Book
Natural Fiber Based Composites
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Entitled “Natural Fiber-Based Composites”, this Special Issue has the objective to give an inventory of the latest research in the area of composites reinforced with natural fibers. Fibers of renewable origin have many advantages. They are abundant and cheap, they have a reduced impact on the environment, and they are also independent from fossil resources. Their ability to mechanically reinforce thermoplastic matrices is well known, as their natural heat insulation ability. In the last twenty years, the use of cellulosic and lignocellulosic agricultural by-products for composite applications has been of great interest, especially for reinforcing matrices. The matrices can themselves be of renewable origin (e.g., proteins, starch, polylactic acid, polyhydroxyalkanoates, polyamides, etc.), thus contributing to the development of 100% bio-based composites with a controlled end of life. This Special Issue’s objective is to give an inventory of the latest research in this area of composites reinforced with natural fibers, focusing in particular on the preparation and molding processes of such materials (e.g., extrusion, injection-molding, hot pressing, etc.) and their characterization. It contains one review and nineteen research reports authored by researchers from four continents and sixteen countries, namely, Brazil, China, France, Italy, Japan, Malaysia, Mexico, Pakistan, Poland, Qatar, Serbia, Slovenia, Spain, Sweden, Tunisia, and Vietnam. It provides an update on current research in the field of natural fiber based composite materials. All these contributions will be a source of inspiration for the development of new composites, especially for producers of natural fibers, polymer matrices of renewable origin and composite materials. Generally speaking, these new materials are environmentally friendly and will undoubtedly find numerous applications in the years to come in many sectors. Dr. Philippe Evon Guest Editor

Keywords

Technology: general issues --- biopolymers --- sunflower protein concentrate --- municipal bio-waste --- urea --- slow-release fertilizers --- lime mortar --- mucilaginous plants --- bio-products --- Fourier-transform infrared (FTIR) characterization --- cellulosic --- fiber --- flame retardant --- ecofriendly --- cotton --- coating --- exterior wall paints --- stain resistance --- western city --- volatile organic compounds (VOCs) --- cellulose nanofiber --- pretreatment --- lignin --- hemicellulose --- physicochemical properties --- natural-fiber-reinforced polymer composites --- chemical treatments --- natural fibers --- manufacturing techniques --- green composites --- amaranth stem --- bark --- pith --- insulation blocks --- hardboards --- green composite --- nonwoven --- sound absorption --- structure --- profiling --- natural dye --- Himalayan balsam --- invasive plant --- printing --- textile --- paper --- olive stone --- biocomposite --- LCA --- circular economy --- filler --- sericin --- poly(N-isopropylacrylamide) --- cotton fabrics --- electrospinning --- microcapsules --- chitosan --- essential oil --- bio functional material --- chitin nanofiber --- composite particle --- Pickering emulsion polymerization --- polystyrene --- scaled-down --- wastewater treatment --- differential scanning calorimetry --- tensile properties --- proton nuclear magnetic resonance spectroscopy --- packaging --- hybrid yarns --- hemp --- PA11 --- woven fabric --- bio-based composite --- mechanical characterisation --- biobased carbon materials --- meso- and microporous carbons --- dye adsorption --- chemical adsorption --- electrostatic interactions --- flax tows --- ultrasound --- gamma treatment --- DVS --- environmental analysis --- mechanical properties --- composite materials --- linseed flax --- straw --- fibre mechanical extraction --- shives --- mean fibre length --- mean fibre diameter --- geotextiles --- antibacterial activity --- kapok fibre --- polycaprolactone --- sound-absorption performance --- fractal dimension --- epoxy --- sustainability --- flame retardancy --- coffee wastes --- biowaste --- biopolymers --- sunflower protein concentrate --- municipal bio-waste --- urea --- slow-release fertilizers --- lime mortar --- mucilaginous plants --- bio-products --- Fourier-transform infrared (FTIR) characterization --- cellulosic --- fiber --- flame retardant --- ecofriendly --- cotton --- coating --- exterior wall paints --- stain resistance --- western city --- volatile organic compounds (VOCs) --- cellulose nanofiber --- pretreatment --- lignin --- hemicellulose --- physicochemical properties --- natural-fiber-reinforced polymer composites --- chemical treatments --- natural fibers --- manufacturing techniques --- green composites --- amaranth stem --- bark --- pith --- insulation blocks --- hardboards --- green composite --- nonwoven --- sound absorption --- structure --- profiling --- natural dye --- Himalayan balsam --- invasive plant --- printing --- textile --- paper --- olive stone --- biocomposite --- LCA --- circular economy --- filler --- sericin --- poly(N-isopropylacrylamide) --- cotton fabrics --- electrospinning --- microcapsules --- chitosan --- essential oil --- bio functional material --- chitin nanofiber --- composite particle --- Pickering emulsion polymerization --- polystyrene --- scaled-down --- wastewater treatment --- differential scanning calorimetry --- tensile properties --- proton nuclear magnetic resonance spectroscopy --- packaging --- hybrid yarns --- hemp --- PA11 --- woven fabric --- bio-based composite --- mechanical characterisation --- biobased carbon materials --- meso- and microporous carbons --- dye adsorption --- chemical adsorption --- electrostatic interactions --- flax tows --- ultrasound --- gamma treatment --- DVS --- environmental analysis --- mechanical properties --- composite materials --- linseed flax --- straw --- fibre mechanical extraction --- shives --- mean fibre length --- mean fibre diameter --- geotextiles --- antibacterial activity --- kapok fibre --- polycaprolactone --- sound-absorption performance --- fractal dimension --- epoxy --- sustainability --- flame retardancy --- coffee wastes --- biowaste

Listing 1 - 10 of 35 << page
of 4
>>
Sort by