Listing 1  10 of 12  << page >> 
Sort by

Choose an application
Numerical analysis  Sparse matrices.  Finite element method.  Matrices éparses  Méthode des éléments finis  Matrices éparses  Méthode des éléments finis
Choose an application
Sparse matrices  Equations  Differential equations, Partial  Matrices éparses  Equations  Equations aux dérivées partielles  Numerical solutions  Numerical solutions  Solutions numériques  Solutions numériques
Choose an application
Sparse matrices  Matrices éparses  Data processing  Informatique  519.6  681.3*G13  Spare matrix techniques  Matrices  Computational mathematics. Numerical analysis. Computer programming  Numerical linear algebra: conditioning; determinants; Eigenvalues; error analysis; linear systems; matrix inversion; pseudoinverses; sparse and very largesystems  Data processing.  681.3*G13 Numerical linear algebra: conditioning; determinants; Eigenvalues; error analysis; linear systems; matrix inversion; pseudoinverses; sparse and very largesystems  519.6 Computational mathematics. Numerical analysis. Computer programming  Matrices éparses  519.6
Choose an application
Very much a usersguide, this book provides insight to the use of preconditioning techniques in areas such as acoustic wave scattering, image restoration and bifurcation problems from electrical power stations. Supporting MATLAB files are available via the Web to assist and develop readers' understanding, and provide stimulus for further study.
Matrices  Differential equations  Iterative methods (Mathematics)  Integral equations  Sparse matrices  Equations différentielles  Itération (Mathématiques)  Equations intégrales  Matrices éparses  Numerical solutions  Data processing  Solutions numériques  Informatique  data processing  Spare matrix techniques  Equations, Integral  Functional equations  Functional analysis  Iteration (Mathematics)  Numerical analysis  Data processing.  517.91 Differential equations  Equations différentielles  Itération (Mathématiques)  Equations intégrales  Matrices éparses  Solutions numériques  517.91  Numerical solutions&delete&
Choose an application
Sparse matrices  Linear systems  Matrices éparses  Systèmes linéaires  519.61  681.3*G13  Numerical methods of algebra  Numerical linear algebra: conditioning; determinants; eigenvalues and eigenvectors; error analysis; linear systems; matrix inversion; pseudoinverses; singular value decomposition; sparse, structured, and very large systems (direct and iterative methods)  519.61 Numerical methods of algebra  Matrices éparses  Systèmes linéaires  Spare matrix techniques  Matrices  Systems, Linear  Differential equations, Linear  System theory
Choose an application
Mathematical control systems  Numerical analysis  Planning (firm)  System analysis  Equations, Simultaneous  Sparse matrices  Data processing.  Sparse matrices  System analysis  519.6  681.3*G13  Network theory  Systems analysis  System theory  Mathematical optimization  Spare matrix techniques  Matrices  Simultaneous equations  Data processing  Computational mathematics. Numerical analysis. Computer programming  Numerical linear algebra: conditioning; determinants; Eigenvalues; error analysis; linear systems; matrix inversion; pseudoinverses; sparse and very largesystems  681.3*G13 Numerical linear algebra: conditioning; determinants; Eigenvalues; error analysis; linear systems; matrix inversion; pseudoinverses; sparse and very largesystems  519.6 Computational mathematics. Numerical analysis. Computer programming  Analyse de systèmes  Matrices éparses  Informatique  Matrices éparses  519.6  Matrices éparses.
Choose an application
Numerical solutions of algebraic equations  Sparse matrices  FORTRAN (Computer program language)  Matrices éparses  FORTRAN (Langage de programmation)  Data processing.  Informatique  data processing  #TCPW N2.0  519.6  681.3*G  681.3*G13  Computational mathematics. Numerical analysis. Computer programming  Mathematics of computing  Numerical linear algebra: conditioning; determinants; Eigenvalues; error analysis; linear systems; matrix inversion; pseudoinverses; sparse and very largesystems  681.3*G13 Numerical linear algebra: conditioning; determinants; Eigenvalues; error analysis; linear systems; matrix inversion; pseudoinverses; sparse and very largesystems  681.3*G Mathematics of computing  519.6 Computational mathematics. Numerical analysis. Computer programming  Matrices éparses  Spare matrix techniques  Matrices  Formula Translation (Computer program language)  Programming languages (Electronic computers)  Data processing
Choose an application
Differential equations, Partial  Iterative methods (Mathematics)  Sparse matrices  Equations aux dérivées partielles  Itération (Mathématiques)  Matrices éparses  Numerical solutions  Solutions numériques  Sparse matrices.  Numerical solutions.  Iterative methods (Mathematics)  519.61  681.3*G13  Spare matrix techniques  Matrices  Iteration (Mathematics)  Numerical analysis  Partial differential equations  Numerical methods of algebra  Numerical linear algebra: conditioning; determinants; Eigenvalues; error analysis; linear systems; matrix inversion; pseudoinverses; sparse and very largesystems  681.3*G13 Numerical linear algebra: conditioning; determinants; Eigenvalues; error analysis; linear systems; matrix inversion; pseudoinverses; sparse and very largesystems  519.61 Numerical methods of algebra  Equations aux dérivées partielles  Itération (Mathématiques)  Matrices éparses  Solutions numériques  Iterative methods (Mathematics).
Choose an application
Sparse matrices  Iterative methods (Mathematics)  Differential equations, Partial  Matrices éparses  Itération (Mathématiques)  Equations aux dérivées partielles  Numerical solutions  Solutions numériques  Sparse matrices.  Numerical solutions.  Iterative methods (Mathematics).  Matrices éparses  Itération (Mathématiques)  Equations aux dérivées partielles  Solutions numériques  Numerical solutions of algebraic equations  519.61  681.3*G13  Iterative methods (Mathematics)  Spare matrix techniques  Iteration (Mathematics)  Numerical methods of algebra  Numerical linear algebra: conditioning; determinants; eigenvalues and eigenvectors; error analysis; linear systems; matrix inversion; pseudoinverses; singular value decomposition; sparse, structured, and very large systems (direct and iterative methods)  519.61 Numerical methods of algebra  Matrices  Numerical analysis  Partial differential equations
Choose an application
Harry M Markowitz received the Nobel Prize in Economics in 1990 for his pioneering work in portfolio theory. He also received the von Neumann Prize from the Institute of Management Science and the Operations Research Institute of America in 1989 for his work in portfolio theory, sparse matrices and the SIMSCRIPT computer language. While Dr Markowitz is wellknown for his work on portfolio theory, his work on sparse matrices remains an essential part of linear optimization calculations. In addition, he designed and developed SIMSCRIPT  a computer programming language. SIMSCRIPT has been widely
Investment analysis.  Portfolio management.  Sparse matrices.  Analyse financière  Gestion de portefeuille  Matrices éparses  Portfolio management  Investment analysis  Sparse matrices  330.9  Spare matrix techniques  Matrices  Analysis of investments  Analysis of securities  Security analysis  Investment management  Investment analysis  Investments  Securities  Electronic information resources  Ebooks  AA / International internationaal  305.91  339.4  Econometrie van de financiële activa. Portfolio allocation en management. CAPM. Bubbles.  Vermogensbeheer. Financiële analyse. Verspreiding van de beleggingsrisico's.  Analyse financière  Matrices éparses  Sparse matrices  Econometrie van de financiële activa. Portfolio allocation en management. CAPM. Bubbles  Vermogensbeheer. Financiële analyse. Verspreiding van de beleggingsrisico's
Listing 1  10 of 12  << page >> 
Sort by
